BACKGROUND Appendectomy is an acute abdominal surgery that is often accompanied by severe abdominal inflammation.Oral probiotics are one of the postoperative treatments for rapid rehabilitation.However,there is a lack...BACKGROUND Appendectomy is an acute abdominal surgery that is often accompanied by severe abdominal inflammation.Oral probiotics are one of the postoperative treatments for rapid rehabilitation.However,there is a lack of prospective studies on this topic after appendectomy.AIM To investigate whether the postoperative probiotics can modulate the inflammatory response and restore intestinal function in patients following appendectomy.METHODS This was a prospective,randomized trial.A total of 60 emergency patients were randomly divided into a control group(n=30)and a probiotic group(n=30).Patients in the control group started to drink some water the first day after surgery,and those in the probiotic group were given water supplemented with Bacillus licheniformis capsules for 5 consecutive days postsurgery.The indices of inflammation and postoperative conditions were recorded,and the data were analyzed with RStudio 4.3.2 software.RESULTS A total of 60 participants were included.Compared with those in the control group,the C-reactive protein(CRP),interleukin 6 and procalcitonin(PCT)levels were significantly lower in the probiotic group at 2 d after surgery(P=2.224e-05,P=0.037,and P=0.002,respectively,all P<0.05).This trend persisted at day 5 post-surgery,with CRP and PCT levels remaining significantly lower in the probiotic group(P=0.001 and P=0.043,both P<0.05).Furthermore,probiotics0.028,both P<0.05).CONCLUSION Postoperative oral administration of probiotics may modulate the gut microbiota,benefit the recovery of the early inflammatory response,and subsequently enhance recovery after appendectomy.展开更多
Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an...Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.展开更多
Since ancient times,mulberry leaf has a prominent intestinal regulatory effect,and the close relationship between intestinal diseases and other diseases has attracted more and more attention.This article reviewed the ...Since ancient times,mulberry leaf has a prominent intestinal regulatory effect,and the close relationship between intestinal diseases and other diseases has attracted more and more attention.This article reviewed the relevant articles on the mulberry leaf in recent years and summarized the research progress of mulberry leaf‘s biological activities and their effects on human intestinal regulation and the corresponding mechanisms.Multiple components in the mulberry leaf can individually or synergistically affect the human intestine,directly and indirectly promote the digestion,absorption,and transport function of the small intestine,adjust the balance of the flora,enhance the barrier function of the intestinal mucosa,improve the immunity of the part,and facilitate the intestine recovery from illness.展开更多
Objective: To evaluate the therapeutic effect of infantile massage on intestinal adhesions after abdominal operation and its influence on the recovery of intestinal function. Methods: 60 children with intestinal adhes...Objective: To evaluate the therapeutic effect of infantile massage on intestinal adhesions after abdominal operation and its influence on the recovery of intestinal function. Methods: 60 children with intestinal adhesions after abdominal operation in our hospital from October 2019 to June 2020 were selected and divided into two groups according to different treatment schemes, study group (n = 30) and control group (n = 30). The former was given infantile massage, while the latter was not treated after operation. The incidence of postoperative intestinal adhesion was compared between the two groups, and the results of anal exhaust, defecation time and abdominal pain disappearance time of the two groups were compared. Results: the incidence of postoperative intestinal adhesion in the study group was lower than that in the control group (P < 0.05);compared with the control group, the average time of anal exhaust and defecation, appetite recovery and abdominal pain disappearance in the study group was shorter than that in the control group (P < 0.05). Conclusion: infantile massage after abdominal operation can reduce the incidence of postoperative intestinal adhesion, shorten the time of anal exhaust and defecation, appetite recovery and abdominal pain disappearance, and promote the rapid recovery of intestinal function.展开更多
This study systematically reviews the pharmacological mechanisms of Huanglian Wendan Decoction in improving intestinal barrier function in ulcerative colitis(UC),including the regulation of intestinal chemical barrier...This study systematically reviews the pharmacological mechanisms of Huanglian Wendan Decoction in improving intestinal barrier function in ulcerative colitis(UC),including the regulation of intestinal chemical barrier,the regulation of intestinal immune barrier,and the improvement of intestinal biological barrier,in order to provide theoretical basis and new ideas for the clinical treatment of UC.展开更多
Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength(Zn-Prot M)can alleviate heat stress(HS)-induced intestinal barrier function damage of broilers.A complet...Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength(Zn-Prot M)can alleviate heat stress(HS)-induced intestinal barrier function damage of broilers.A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers.Under high temperature(HT),a 1(Control,HT-CON)+2(Zn source)×2(added Zn level)factorial arrangement of treatments was used.The 2 added Zn sources were Zn-Prot M and Zn sulfate(ZnS),and the 2 added Zn levels were 30 and 60 mg/kg.Under normal temperature(NT),a CON group(NT-CON)and pair-fed group(NT-PF)were included.Results The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1,occludin,junctional adhesion molecule-A(JAMA),zonula occludens-1(ZO-1)and zinc finger protein A20(A20)in the jejunum,and HS also remarkably increased serum fluorescein isothiocyanate dextran(FITC-D),endotoxin and interleukin(IL)-1βcontents,serum diamine oxidase(DAO)and matrix metalloproteinase(MMP)-2 activities,nuclear factor kappa-B(NF-κB)p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum.However,dietary supplementation with Zn,especially organic Zn as Zn-Prot M at 60 mg/kg,significantly decreased serum FITC-D,endotoxin and IL-1βcontents,serum DAO and MMP-2 activities,NF-κB p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers,and notably promoted mRNA and protein expression levels of claudin-1,ZO-1 and A20.Conclusions Our results suggest that dietary Zn,especially 60 mg Zn/kg as Zn-Prot M,can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.展开更多
Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrati...Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.展开更多
Background The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota.Astragalus polysaccharides(APS)have a long...Background The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota.Astragalus polysaccharides(APS)have a long history of use in traditional Chinese medicine owing to its protective properties against intestinal barrier function.The mechanism of APS-induced gut microbiota enhancing intestinal barrier function is urgently needed.Results Dietary polysaccharide deprivation induced intestinal barrier dysfunction,decreased growth performance,altered microbial composition(Faecalibacterium,Dorea,and Coprobacillus),and reduced isobutyrate concentration.The results showed that APS fa cilitates intestinal barrier function in broiler chickens,including a thicker mucus layer,reduced crypt depth,and the growth of tight junction proteins.We studied the landscape of APS-induced gut microbiota and found that APS selectively promoted the growth of Parabacteroides,a commensal bacterium that plays a predominant role in enhancing intestinal barrier function.An in vitro g rowth assan further verified that APS selectively increased the abundance of Parabacteroides distasonis and Bacteroides uniformis.Dietary APS supplementation increased the concentrations of isobutyrate and bile acid(mainly chenodeoxycholic acid and deoxycholate acid)and activated signaling pathways related to intestinal barrier function(such as protein processing in the endoplasmic reticulum,tight junctions,and adherens junction signaling pathways).Conclusions APS intervention restored the dietary polysaccharide-induced dysfunction of the intestinal barrier by selectively promoting the abundance of Parabacteroides distasonis,and increasing the concentrations of isobutyrate and bile acids(mainly CDCA and DCA).These findings suggest that APS-induced gut microbiota and metabolic niches are promising strategies for enhancing intestinal barrier function.展开更多
Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the ...Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.展开更多
Objective:Jianpi huoxue decoction(JHD),a Chinese herbal formula,is commonly used for treating alcohol-associated liver disease(ALD).This study aimed to investigate the mechanism by which JHD affects intestinal barrier...Objective:Jianpi huoxue decoction(JHD),a Chinese herbal formula,is commonly used for treating alcohol-associated liver disease(ALD).This study aimed to investigate the mechanism by which JHD affects intestinal barrier function in ALD rats.Methods:The Sprague-Dawley rats were randomly divided into three groups:control group,model group and JHD group.They were pair-fed a modified Lieber-DeCarli liquid diet containing alcohol(model group,n=10;JHD group,n=10)or isocaloric maltose dextrin(control group,n=10)for 6 weeks.After 3 weeks of feeding,the mice in the JHD group were given JHD(10 mL/kg/day)by gavage for 3 weeks,and those in the control and model groups received equal amounts of double-distilled water for the same period of time.Afterwards,all the rats were given lipopolysaccharide(LPS)by gavage and sacrificed 3.5 h later.LPS levels were measured in the portal blood to evaluate gut leakage.Transmission electron microscopy(TEM)was used to observe ultrastructural changes in the intestinal tract.Adherens junction(AJ)and tight junction(TJ)proteins were detected by Western blotting,immunofluorescence or immunohistochemistry.Results:JHD ameliorated Lieber-DeCarli liquid diet-induced hepatic steatosis,inflammation and LPS expression.It improved pathological changes in the liver and alleviated intestinal ultrastructure injury.Moreover,it significantly enhanced the integrity of tight junctions by increasing the expression of zonula occludens‐1(ZO-1)and occludin.It suppressed the activation of myosin light chain(MLC)phosphorylation.Conclusion:JHD improves intestinal barrier function and reduces gut leakiness in ALD rats.展开更多
BACKGROUND Intestinal barrier dysfunction is a prevalent and varied manifestation of acute pancreatitis(AP).Molecular mechanisms underlying the early intestinal barrier in AP remain poorly understood.AIM To explore th...BACKGROUND Intestinal barrier dysfunction is a prevalent and varied manifestation of acute pancreatitis(AP).Molecular mechanisms underlying the early intestinal barrier in AP remain poorly understood.AIM To explore the biological processes and mechanisms of intestinal injury associated with AP,and to find potential targets for early prevention or treatment of intestinal barrier injury.METHODS This study utilized single-cell RNA sequencing of the small intestine,alongside in vitro and in vivo experiments,to examine intestinal barrier function homeostasis during the early stages of AP and explore involved biological processes and potential mechanisms.RESULTS Seventeen major cell types and 33232 cells were identified across all samples,including normal,AP1(4x caerulein injections,animals sacrificed 2 h after the last injection),and AP2(8x caerulein injections,animals sacrificed 4 h after the last injection).An average of 980 genes per cell was found in the normal intestine,compared to 927 in the AP1 intestine and 1382 in the AP2 intestine.B cells,dendritic cells,mast cells(MCs),and monocytes in AP1 and AP2 showed reduced numbers compared to the normal intestine.Enterocytes,brush cells,enteroendocrine cells,and goblet cells maintained numbers similar to the normal intestine,while cytotoxic T cells and natural killer(NK)cells increased.Enterocytes in early AP exhibited elevated programmed cell death and intestinal barrier dysfunction but retained absorption capabilities.Cytotoxic T cells and NK cells showed enhanced pathogen-fighting abilities.Activated MCs,secreted chemokine(C-C motif)ligand 5(CCL5),promoted neutrophil and macrophage infiltration and contributed to barrier dysfunction.CONCLUSION These findings enrich our understanding of biological processes and mechanisms in AP-associated intestinal injury,suggesting that CCL5 from MCs is a potential target for addressing dysfunction.展开更多
Background AflatoxinB1(AFB_(1))is a prevalent contaminant in agricultural products,presenting significant risks to animal health.CotA laccase from Bacillus licheniformis has shown significant efficacy in degrading myc...Background AflatoxinB1(AFB_(1))is a prevalent contaminant in agricultural products,presenting significant risks to animal health.CotA laccase from Bacillus licheniformis has shown significant efficacy in degrading mycotoxins in vitro test.The efficacy of Bacillus CotA laccase in animals,however,remains to be confirmed.A 2×2 factorial design was used to investigate the effects of Bacillus CotA laccase level(0 or 1 U/kg),AFB_(1) challenge(challenged or unchal-lenged)and their interactions on ducks.The purpose of this study was to evaluate the efficacy of Bacillus CotA laccase in alleviatingAFB_(1) toxicosis of ducks.Results Bacillus CotA laccase alleviatedAFB_(1)-induced declines in growth performance of ducks accompanied by improved average daily gain(ADG)and lower feed/gain ratio(F/G).Bacillus CotA laccase amelioratedAFB_(1)-induced gut barrier dysfunctions and inflammation testified by increasing the jejunal villi height/crypt depth ratio(VH/CD)and the mRNA expression of tight junction protein 1(TJP1)and zonula occluden-1(ZO-1)as well as decreasing the expression of inflammation-related genes in the jejunum of ducks.Amino acid metabolome showed that Bacillus CotA laccase amelioratedAFB_(1)-induced amino acid metabolism disorders evidenced by increasing the level of glu-tamic acid in serum and upregulating the expression of amino acid transport related genes in jejunum of ducks.Bacil-lus CotA laccase amelioratedAFB_(1)-induced liver injury testified by suppressing oxidative stress,inhibiting apoptosis,and downregulating the expression of hepatic metabolic enzyme related genes of ducks.Moreover,Bacillus CotA laccase degradedAFB_(1) in digestive tract of ducks,resulting in the reduced absorption level ofAFB_(1) across intestinal epithelium testified by the decreased level ofAFB_(1)-DNA adduct in the liver,and the reduced content ofAFB_(1) residues in liver and feces of ducks.Conclusions Bacillus CotA laccase effectively improved the growth performance,intestinal health,amino acid metabolism and hepatic aflatoxin metabolism of ducks fedAFB_(1) diets,highlighting its potential as an efficient and safe feed enzyme forAFB_(1) degradation in animal production.展开更多
BACKGROUND External factors in ulcerative colitis(UC)exacerbate colonic epithelial permea-bility and inflammatory responses.Keratin 1(KRT1)is crucial in regulating these alterations,but its specific role in the progre...BACKGROUND External factors in ulcerative colitis(UC)exacerbate colonic epithelial permea-bility and inflammatory responses.Keratin 1(KRT1)is crucial in regulating these alterations,but its specific role in the progression of UC remains to be fully eluci-dated.AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC.METHODS A KRT1 antibody concentration gradient test,along with a dextran sulfate sodium(DSS)-induced animal model,was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system(KKS)and the cleavage of bradykinin(BK)/high molecular weight kininogen(HK)in UC.RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation,induced apoptosis,reduced HK expression,and increased BK expression.It further downregulated intestinal barrier proteins,including occludin,zonula occludens-1,and claudin,and negatively impacted the coagulation factor XII.These changes led to enhanced activation of BK and HK cleavage,thereby intensifying KKS-mediated inflammation in UC.In the DSS-induced mouse model,administration of KRT1 antibody mitigated colonic injury,increased colon length,alleviated weight loss,and suppressed inflammatory cytokines such as interleukin(IL)-1,IL-6,tumor necrosis factor-α.It also facilitated repair of the intestinal barrier,reducing DSS-induced injury.CONCLUSION KRT1 inhibits BK expression,suppresses inflammatory cytokines,and enhances markers of intestinal barrier function,thus ameliorating colonic damage and maintaining barrier integrity.KRT1 is a viable therapeutic target for UC.展开更多
This study was conducted to investigate host-microbiota interactions and explore the effects of maternal gut microbiota transplantation on the growth and intestinal functions of newborns in a germ-free(GF)pig model.Tw...This study was conducted to investigate host-microbiota interactions and explore the effects of maternal gut microbiota transplantation on the growth and intestinal functions of newborns in a germ-free(GF)pig model.Twelve hysterectomy-derived GF Bama piglets were reared in 6 sterile isolators.Among them,6 were considered as the GF group,and the other 6 were orally inoculated with healthy sow fecal suspension as fecal microbiota transplanted(FMT)group.Another 6 piglets from natural birth were regarded as the conventional(CV)group.The GF and FMT groups were hand-fed with Co60-y-irradiated sterile milk powder,while the CV group was reared by lactating Bama sows.All groups were fed for 21 days.Then,all piglets and then were switched to sterile feed for another 21 days.Results showed that the growth performance,nutrient digestibility,and concentrations of short-chain fatty acids in the GF group decreased(P<0.05).Meanwhile,the serum urea nitrogen concentration and digesta pH values in the GF group increased compared with those in the FMT and CV groups(P<0.05).Compared with the CV group,the GF group demonstrated upregulation in the mRNA expression levels of intestinal barrier function-related genes in the small intestine(P<0.05).In addition,the mRNA abundances of intestinal development and absorption-related genes in the small intestine and colon were higher in the GF group than in the CV and FMT groups(P<0.05).The FMT group exhibited greater growth performance,lipase activity,and nutrient digestibility(P<0.05),higher mRNA expression levels of intestinal development and barrier-related genes in the small intestine(P<0.05),and lower mRNA abundances of pro-inflammatory factor in the colon and jejunum(P<0.05)than the CV group.In conclusion,the absence of gut microbes impaired the growth and nutrient digestibility,and healthy sow gut microbiota transplantation increased the growth and nutrient digestibility and improved the intestinal development and barrier function of newborn piglets,indicating the importance of intestinal microbes for intestinal development and functions.展开更多
BACKGROUND We previously showed,using the Traditional Chinese Medicine System Pharmacology Database,that Gegen Qinlian decoction(GQD)had a direct antitumor effect,and was combined with programmed cell death protein(PD...BACKGROUND We previously showed,using the Traditional Chinese Medicine System Pharmacology Database,that Gegen Qinlian decoction(GQD)had a direct antitumor effect,and was combined with programmed cell death protein(PD)-1 inhibitors to treat microsatellite stable(MSS)tumor-bearing mice.However,the effect of GQD on patients with colorectal cancer(CRC)is not clear.AIM To determine the therapeutic mechanism of GQD in improving immune function,reducing inflammation and protecting intestinal barrier function.METHODS Seventy patients with CRC were included in this study:37 in the control group and 33 in the treatment group.The proportions of CD4+T,CD8+T,natural killer(NK),NKT and T regulatory cells were measured by flow cytometry.Levels of the cytokines tumor necrosis factor(TNF)-α,interferon(IFN)-γ,interleukin(IL)-2,IL-6,IL-10 and serotonin(5-hydroxytryptamine;5-HT)in serum were assessed by enzyme-linked immunosorbent assay(ELISA).The expression of zonula occludens(ZO)-1,occludin,nuclear factor(NF)-κB and TNF-αin tumor and normal tissues was measured by immunohistochemistry.The composition of gut microbiota from patients in the treatment group was assessed using 16S rDNA analysis.RESULTS There were no adverse events in the treatment group.The proportion of CD4+T cells and NKT cells in the post-treatment group was significantly higher than that in the pre-treatment and control groups(P<0.05).The level of TNF-αin the posttreatment group was significantly lower than that in the pre-treatment and control groups(P<0.05).The concentration of 5-HT in the post-treatment group was significantly lower than that in the pre-treatment group(P<0.05).The expression of ZO-1 and occludin in tumor tissues in the treatment group was significantly higher than that in the control group(P<0.05).The expression of ZO-1 in normal tissues of the treatment group was significantly higher than that in the control group(P=0.010).Compared with the control group,expression of NF-κB and TNF-αin tumor tissues of the treatment group was significantly decreased(P<0.05).Compared with the pre-treatment group,GQD decreased the relative abundance of Megamonas and Veillonella.In addition,GQD increased the relative abundance of Bacteroides,Akkermansia and Prevotella.CONCLUSION GQD enhances immunity and protects intestinal barrier function in patients with CRC by regulating the composition of gut microbiota.展开更多
AIM: To evaluate the effects of combined treatment of glutamine (Gln) and recombinant human growth hormone(rhGH) on intestinal barrier function following portal hypertension surgery. METHODS: This study was desi...AIM: To evaluate the effects of combined treatment of glutamine (Gln) and recombinant human growth hormone(rhGH) on intestinal barrier function following portal hypertension surgery. METHODS: This study was designed as a prospective, randomized and controlled clinical trial. Forty two patients after portal hypertension surgery were randomly assigned into 2 groups: control group (n = 20) and supplemental group (adding Gin and rhGH, n = 22). Every patient received isocaloric and isonitrogenous standard total parenteral nutrition (TPN) starting 3 d after surgery for 7 d. Blood samples were obtained before surgery and at the 3rd and 10th day postoperatively. Host immunity was evaluated by measuring levels of CD4, CD8, CD4/CD8, IgG, IgM and IgA, and the inflammatory responses were determined by assessing IL-2, TNF-α and C-reactive protein (CRP) levels. Intestinal permeability and integrity was evaluated by L/M test and histological examination, respectively. RESULTS: On postoperative d 10, CD4, CD4/CD8, IgG and IL-2 levels in supplemental group were significantly higher than those in control group (33.7±5.5 vs 31.0 ± 5.4, P 〈 0.05, (1.17±0.32 vs 1.05 ± 0.15, P 〈 0.05, 13.94±1.09 vs 12.33±1.33, P 〈 0.05, and 368.12 ± 59.25 vs 318.12 ± 45.65, P 〈 0.05, respectively), whereas the increase in serum TNF-α concentration was significantly reduced (41.02 ± 27.56 vs 160.09 ± 35.17, P 〈 0.05). The increase in L/M ratio was significantly lower in the supplemental group than in the control group (0.0166 ± 0.0017 vs 0.0339 ± 0.0028, P 〈 0.05). Moreover, mucosal integrity in the supplemental group was better than in the control group.CONCLUSION: Postoperative administration of TPN supplemented with Gin and rhGH in patients after portal hypertension surgery improves immune function, modulates inflammatory response, prevents the intestinal mucous membrane from atrophy and preserves intestinal integrity.展开更多
BACKGROUND: Most patients waiting for liver transplantation have end-stage liver diseases with malnutrition, which is prone to induce intestinal barrier dysfunction after liver transplantation. We aimed to study the e...BACKGROUND: Most patients waiting for liver transplantation have end-stage liver diseases with malnutrition, which is prone to induce intestinal barrier dysfunction after liver transplantation. We aimed to study the effect of probiotics on intestinal barrier function in malnourished rats following liver transplantation with long-term antibiotics. METHODS: Twelve Lewis rats were selected as donors. Twelve BN rats, which served as recipients, were subjected to malnutrition by semi-starvation for 4-5 weeks. They were randomly divided into two groups: a control group which received phosphate-buffered saline and a probiotics group which received Bifidobacterium and Lactobacillus. All recipients were injected with intramuscular imipenem and subcutaneous cyclosporine A. Furthermore, six normal BN rats without any drugs or operations served as a normal group. Eight days after operation, all rats were sacrificed for examination of the following parameters: serum levels of endotoxin and TNF-α, bacterial translocation, intestinal microflora, ileocecal sIgA, lymphocyte numbers, and phenotypes (CD4, CD8, αβTCR, γδTCR)ofPeyer’spatches. RESULTS: In recipients subjected to malnutrition, weight decreased by 20% and they survived until 8 days after operation. Compared with the normal group, all recipients on postoperative day 8 showed increased levels of serum endotoxin and TNF-α as well as increased counts oftranslocated bacteria. Meanwhile, there were decreases in counts of Bifidobacterium and Lactobacillus in the ileocecum, sIgA concentration, and lymphocytes of Peyer’s patches. Moreover, partial alteration in lymphocyte phenotypes was evidenced by elevated ratios of CD8 + and γδTCR + lymphocytes. In contrast, compared to the control group, supplementation with probiotics reduced the levels of serum endotoxin, TNF-α and bacterial translocation, increased the counts of Bifidobacterium and Lactobacillus, the concentration of sIgA and lymphocytes of Peyer’s patches, and also slightly restored the alteration of lymphocyte phenotypes. CONCLUSION: Supplementation with probiotics including Bifidobac-terium and Lactobacillus promoted partial restoration of intestinal microflora and improved intestinal barrier function in malnourished rats after liver transplantation with long-term use of antibiotics.展开更多
BACKGROUND:Most patients after liver transplantation (LT) suffer from intestinal barrier dysfunction.Glycyl-glutamine (Gly-Gln) by parenteral supplementation is hydrolyzed to release glutamine,which improves intestina...BACKGROUND:Most patients after liver transplantation (LT) suffer from intestinal barrier dysfunction.Glycyl-glutamine (Gly-Gln) by parenteral supplementation is hydrolyzed to release glutamine,which improves intestinal barrier function in intestinal injury.This study aimed to investigate the effect of GlyGln by enteral supplementation on intestinal barrier function in rats after allogenetic LT under immunosuppressive therapy.METHODS:Twelve inbred Lewis rats were selected randomly as donors,and 24 inbred Brown Norway (BN) rats as recipients of allogenetic LT.The recipients were divided into a control group (Ala,n=12) and an experimental group (Gly-Gln,n=12).In each group,6 normal BN rats were sampled for normal parameters on preoperative day 3.The 6 recipients in the control group received alanine (Ala) daily by gastric perfusion for 3 preoperative days and 7 postoperative days,and the 6 recipients in the experimental group were given Gly-Gln in the same manner.The 12 BN recipients underwent orthotopic LT under sterile conditions after a 3-day fast and were given immunosuppressive therapy for 7 days.They were harvested for sampling on postoperative day 8.The following parameters were assessed:intestinal mucosal protein content,mucosal ultrastructure,ileocecal sIgA content,portal plasma levels of endotoxin and TNF-α,and bacterial translocation.RESULTS:All recipients were alive after LT.On preoperative day 3,all parameters were similar in the two groups.On postoperative day 8,all parameters in the two groups were remarkably changed from those on preoperative day 3.However,compared to the Ala group,supplementation withGly-Gln increased the levels of intestinal mucosal protein and ileocecal sIgA,improved mucosal microvilli,and decreased portal plasma levels of endotoxin and TNF-α as well as bacterial translocation.CONCLUSION:Enteral supplementation with Gly-Gln improved intestinal barrier function after allogenetic LT in rats.展开更多
Background Lactulose as an effective prebiotic protects intestinal mucosal injury.Bacillus coagulans is widely used in feed additives because of its ability to promote intestinal health.Our previous study suggests tha...Background Lactulose as an effective prebiotic protects intestinal mucosal injury.Bacillus coagulans is widely used in feed additives because of its ability to promote intestinal health.Our previous study suggests that the combination of lactulose and Bacillus coagulans may be a good candidate as alternative for antibiotic growth promoters.However,the in vivo effects of lactulose and Bacillus coagulans on growth and intestinal health under immune challenge in piglets remains unclear.The objective of this study is to explore the protective effects of synbiotic containing lactu-lose and Bacillus coagulans on the intestinal mucosal injury and barrier dysfunction under immune challenge in weaned piglets.Methods Twenty four weaned piglets were assigned to 4 groups.Piglets in the CON-_(saline)and LPS-_(LPS)group were fed the basal diet,while others were fed either with chlortetracycline(CTC)or synbiotic mixture of lactulose and Bacillus coagulans for 32 d before injection of saline or lipopolysaccharide(LPS).Piglets were sacrificed 4 h after LPS injection to collect samples to determine intestinal morphology,integrity and barrier functions as well as relative genes and proteins.Results Our data showed that no differences were observed in the growth performance of the four test groups.LPS injection induced higher serum diamine oxidase activities,D-lactic acid levels,and endotoxin status,lower villus height and ratio of villus height to crypt depth,greater mRNA and lower protein expression related tight junction in both jejunum and ileum.In addition,a higher apoptosis index,and protein expression of Bax and caspase-3 were also observed in the LPS challenge group.Interestingly,dietary synbiotic mixture with lactulose and Bacillus coagulans protected against LPS-induced intestinal damage,barrier dysfunction and higher apoptosis as well as CTC.Conclusions Our data suggest that dietary supplementation of synbiotic mixture with lactulose and Bacillus coagu-lans showed resilience to LPS-induced intestinal morphological damage,barrier dysfunction and aggressive apoptosis in piglets as well as the protective effects of CTC.These results indicate that synbiotic mixture of lactulose and Bacillus coagulans showed beneficial effects on performance and resilience to acute immune stress in weaned piglets.展开更多
AIM: To investigate the protective effects of combinations of probiotic (Bifico) on interleukin (IL)-10-gene-deficient (IL-10 KO) mice and Caco-2 cell monolayers.
文摘BACKGROUND Appendectomy is an acute abdominal surgery that is often accompanied by severe abdominal inflammation.Oral probiotics are one of the postoperative treatments for rapid rehabilitation.However,there is a lack of prospective studies on this topic after appendectomy.AIM To investigate whether the postoperative probiotics can modulate the inflammatory response and restore intestinal function in patients following appendectomy.METHODS This was a prospective,randomized trial.A total of 60 emergency patients were randomly divided into a control group(n=30)and a probiotic group(n=30).Patients in the control group started to drink some water the first day after surgery,and those in the probiotic group were given water supplemented with Bacillus licheniformis capsules for 5 consecutive days postsurgery.The indices of inflammation and postoperative conditions were recorded,and the data were analyzed with RStudio 4.3.2 software.RESULTS A total of 60 participants were included.Compared with those in the control group,the C-reactive protein(CRP),interleukin 6 and procalcitonin(PCT)levels were significantly lower in the probiotic group at 2 d after surgery(P=2.224e-05,P=0.037,and P=0.002,respectively,all P<0.05).This trend persisted at day 5 post-surgery,with CRP and PCT levels remaining significantly lower in the probiotic group(P=0.001 and P=0.043,both P<0.05).Furthermore,probiotics0.028,both P<0.05).CONCLUSION Postoperative oral administration of probiotics may modulate the gut microbiota,benefit the recovery of the early inflammatory response,and subsequently enhance recovery after appendectomy.
基金partially funded by the Ministry of AgricultureNature and Food Quality(project number BO-55-001-015)partly by“Vereniging Diervoederonderzoek Nederland”。
文摘Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.
基金The Key Generic Technology Research Project of High-Quality Agricultural Development of Hebei Province(Grant No.20327121D)Biomedical Development and Transformation Research Project of Hebei Province(Grant No.2020TXZH05)Science and Technology Research Project of Higher Education Institutions of Hebei Province(Grant No.2019188)。
文摘Since ancient times,mulberry leaf has a prominent intestinal regulatory effect,and the close relationship between intestinal diseases and other diseases has attracted more and more attention.This article reviewed the relevant articles on the mulberry leaf in recent years and summarized the research progress of mulberry leaf‘s biological activities and their effects on human intestinal regulation and the corresponding mechanisms.Multiple components in the mulberry leaf can individually or synergistically affect the human intestine,directly and indirectly promote the digestion,absorption,and transport function of the small intestine,adjust the balance of the flora,enhance the barrier function of the intestinal mucosa,improve the immunity of the part,and facilitate the intestine recovery from illness.
文摘Objective: To evaluate the therapeutic effect of infantile massage on intestinal adhesions after abdominal operation and its influence on the recovery of intestinal function. Methods: 60 children with intestinal adhesions after abdominal operation in our hospital from October 2019 to June 2020 were selected and divided into two groups according to different treatment schemes, study group (n = 30) and control group (n = 30). The former was given infantile massage, while the latter was not treated after operation. The incidence of postoperative intestinal adhesion was compared between the two groups, and the results of anal exhaust, defecation time and abdominal pain disappearance time of the two groups were compared. Results: the incidence of postoperative intestinal adhesion in the study group was lower than that in the control group (P < 0.05);compared with the control group, the average time of anal exhaust and defecation, appetite recovery and abdominal pain disappearance in the study group was shorter than that in the control group (P < 0.05). Conclusion: infantile massage after abdominal operation can reduce the incidence of postoperative intestinal adhesion, shorten the time of anal exhaust and defecation, appetite recovery and abdominal pain disappearance, and promote the rapid recovery of intestinal function.
基金Supported by Major Project of Zhongshan Science and Technology Bureau(2021B3009).
文摘This study systematically reviews the pharmacological mechanisms of Huanglian Wendan Decoction in improving intestinal barrier function in ulcerative colitis(UC),including the regulation of intestinal chemical barrier,the regulation of intestinal immune barrier,and the improvement of intestinal biological barrier,in order to provide theoretical basis and new ideas for the clinical treatment of UC.
基金Key International Cooperation Program of the National Natural Science Foundation of China(32120103011)Jiangsu Shuang Chuang Tuan Dui program(JSSCTD202147)+1 种基金Jiangsu Shuang Chuang Ren Cai program(JSSCRC2021541)Initiation Funds of Yangzhou University for Distinguished Scientists.
文摘Background The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength(Zn-Prot M)can alleviate heat stress(HS)-induced intestinal barrier function damage of broilers.A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers.Under high temperature(HT),a 1(Control,HT-CON)+2(Zn source)×2(added Zn level)factorial arrangement of treatments was used.The 2 added Zn sources were Zn-Prot M and Zn sulfate(ZnS),and the 2 added Zn levels were 30 and 60 mg/kg.Under normal temperature(NT),a CON group(NT-CON)and pair-fed group(NT-PF)were included.Results The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1,occludin,junctional adhesion molecule-A(JAMA),zonula occludens-1(ZO-1)and zinc finger protein A20(A20)in the jejunum,and HS also remarkably increased serum fluorescein isothiocyanate dextran(FITC-D),endotoxin and interleukin(IL)-1βcontents,serum diamine oxidase(DAO)and matrix metalloproteinase(MMP)-2 activities,nuclear factor kappa-B(NF-κB)p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum.However,dietary supplementation with Zn,especially organic Zn as Zn-Prot M at 60 mg/kg,significantly decreased serum FITC-D,endotoxin and IL-1βcontents,serum DAO and MMP-2 activities,NF-κB p65 mRNA expression level,and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers,and notably promoted mRNA and protein expression levels of claudin-1,ZO-1 and A20.Conclusions Our results suggest that dietary Zn,especially 60 mg Zn/kg as Zn-Prot M,can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
基金funded by the National Natural Science Foundation of China(32273074,31972746,31872538 and 31772809)the Basic Scientific Research Project of Liaoning Provincial Department of Education,China(LJKZ0632)。
文摘Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.
基金supported by the National Natural Science Foundation of China(32272916)National key Research&Development Program of China(2023YFD1301400)+1 种基金the Program for Shaanxi Science&Technology from Shaanxi Provincial Science and Technology Department(2022GDTSLD-46-0302,2023KXJ-243,2023GXJS-02-01,K3031223075,L2022-QCYZXNY-004,2021TD-30,019HBGC-16,2019ZDXM3-02)the Yongjiang Innovative Research Team。
文摘Background The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota.Astragalus polysaccharides(APS)have a long history of use in traditional Chinese medicine owing to its protective properties against intestinal barrier function.The mechanism of APS-induced gut microbiota enhancing intestinal barrier function is urgently needed.Results Dietary polysaccharide deprivation induced intestinal barrier dysfunction,decreased growth performance,altered microbial composition(Faecalibacterium,Dorea,and Coprobacillus),and reduced isobutyrate concentration.The results showed that APS fa cilitates intestinal barrier function in broiler chickens,including a thicker mucus layer,reduced crypt depth,and the growth of tight junction proteins.We studied the landscape of APS-induced gut microbiota and found that APS selectively promoted the growth of Parabacteroides,a commensal bacterium that plays a predominant role in enhancing intestinal barrier function.An in vitro g rowth assan further verified that APS selectively increased the abundance of Parabacteroides distasonis and Bacteroides uniformis.Dietary APS supplementation increased the concentrations of isobutyrate and bile acid(mainly chenodeoxycholic acid and deoxycholate acid)and activated signaling pathways related to intestinal barrier function(such as protein processing in the endoplasmic reticulum,tight junctions,and adherens junction signaling pathways).Conclusions APS intervention restored the dietary polysaccharide-induced dysfunction of the intestinal barrier by selectively promoting the abundance of Parabacteroides distasonis,and increasing the concentrations of isobutyrate and bile acids(mainly CDCA and DCA).These findings suggest that APS-induced gut microbiota and metabolic niches are promising strategies for enhancing intestinal barrier function.
基金funded by the National Nature Science Foundation of China(32002196)。
文摘Background Global warming leading to heat stress(HS)is becoming a major challenge for broiler production.This study aimed to explore the protective effects of seaweed(Enteromorpha prolifera)polysaccharides(EPS)on the intestinal barrier function,microbial ecology,and performance of broilers under HS.A total of 144 yellow-feathered broilers(male,56 days old)with 682.59±7.38 g were randomly assigned to 3 groups:1)TN(thermal neutral zone,23.6±1.8℃),2)HS(heat stress,33.2±1.5℃ for 10 h/d),and 3)HSE(HS+0.1%EPS).Each group contained 6 replicates with 8 broilers per replicate.The study was conducted for 4 weeks;feed intake and body weights were measured at the end of weeks 2 and 4.At the end of the feeding trial,small intestine samples were collected for histomorphology,antioxidant,secretory immunoglobulin A(s Ig A)content,apoptosis,gene and protein expression analysis;cecal contents were also collected for microbiota analysis based on 16S r DNA sequencing.Results Dietary EPS promoted the average daily gain(ADG)of broilers during 3–4 weeks of HS(P<0.05).At the end of HS on broilers,the activity of total superoxide dismutase(T-SOD),glutathione S-transferase(GST),and the content of s Ig A in jejunum were improved by EPS supplementation(P<0.05).Besides,dietary EPS reduced the epithelial cell apoptosis of jejunum and ileum in heat-stressed broilers(P<0.05).Addition of EPS in HS group broilers'diet upregulated the relative m RNA expression of Occludin,ZO-1,γ-GCLc and IL-10 of the jejunum(P<0.05),whereas downregulated the relative m RNA expression of NF-κB p65,TNF-αand IL-1βof the jejunum(P<0.05).Dietary EPS increased the protein expression of Occludin and ZO-1,whereas it reduced the protein expression of NF-κB p65 and MLCK(P<0.01)and tended to decrease the protein expression of TNF-α(P=0.094)in heat-stressed broilers.Furthermore,the proportions of Bacteroides and Oscillospira among the three groups were positively associated with jejunal apoptosis and pro-inflammatory cytokine expression(P<0.05)and negatively correlated with jejunal Occludin level(P<0.05).However,the proportions of Lactobacillus,Barnesiella,Subdoligranulum,Megasphaera,Collinsella,and Blautia among the three groups were positively related to ADG(P<0.05).Conclusions EPS can be used as a feed additive in yellow-feathered broilers.It effectively improves growth performance and alleviates HS-induced intestinal injury by relieving inflammatory damage and improving the tight junction proteins expression.These beneficial effects may be related to inhibiting NF-κB/MLCK signaling pathway activation and regulation of cecal microbiota.
基金supported by the National Natural Science Foundation of China(No.30801536).
文摘Objective:Jianpi huoxue decoction(JHD),a Chinese herbal formula,is commonly used for treating alcohol-associated liver disease(ALD).This study aimed to investigate the mechanism by which JHD affects intestinal barrier function in ALD rats.Methods:The Sprague-Dawley rats were randomly divided into three groups:control group,model group and JHD group.They were pair-fed a modified Lieber-DeCarli liquid diet containing alcohol(model group,n=10;JHD group,n=10)or isocaloric maltose dextrin(control group,n=10)for 6 weeks.After 3 weeks of feeding,the mice in the JHD group were given JHD(10 mL/kg/day)by gavage for 3 weeks,and those in the control and model groups received equal amounts of double-distilled water for the same period of time.Afterwards,all the rats were given lipopolysaccharide(LPS)by gavage and sacrificed 3.5 h later.LPS levels were measured in the portal blood to evaluate gut leakage.Transmission electron microscopy(TEM)was used to observe ultrastructural changes in the intestinal tract.Adherens junction(AJ)and tight junction(TJ)proteins were detected by Western blotting,immunofluorescence or immunohistochemistry.Results:JHD ameliorated Lieber-DeCarli liquid diet-induced hepatic steatosis,inflammation and LPS expression.It improved pathological changes in the liver and alleviated intestinal ultrastructure injury.Moreover,it significantly enhanced the integrity of tight junctions by increasing the expression of zonula occludens‐1(ZO-1)and occludin.It suppressed the activation of myosin light chain(MLC)phosphorylation.Conclusion:JHD improves intestinal barrier function and reduces gut leakiness in ALD rats.
基金Supported by National Natural Science Foundation of China,No.82300739Hunan Provincial Natural Science Foundation,No.2023JJ40821Changsha Natural Science Foundation,No.kq2208308.
文摘BACKGROUND Intestinal barrier dysfunction is a prevalent and varied manifestation of acute pancreatitis(AP).Molecular mechanisms underlying the early intestinal barrier in AP remain poorly understood.AIM To explore the biological processes and mechanisms of intestinal injury associated with AP,and to find potential targets for early prevention or treatment of intestinal barrier injury.METHODS This study utilized single-cell RNA sequencing of the small intestine,alongside in vitro and in vivo experiments,to examine intestinal barrier function homeostasis during the early stages of AP and explore involved biological processes and potential mechanisms.RESULTS Seventeen major cell types and 33232 cells were identified across all samples,including normal,AP1(4x caerulein injections,animals sacrificed 2 h after the last injection),and AP2(8x caerulein injections,animals sacrificed 4 h after the last injection).An average of 980 genes per cell was found in the normal intestine,compared to 927 in the AP1 intestine and 1382 in the AP2 intestine.B cells,dendritic cells,mast cells(MCs),and monocytes in AP1 and AP2 showed reduced numbers compared to the normal intestine.Enterocytes,brush cells,enteroendocrine cells,and goblet cells maintained numbers similar to the normal intestine,while cytotoxic T cells and natural killer(NK)cells increased.Enterocytes in early AP exhibited elevated programmed cell death and intestinal barrier dysfunction but retained absorption capabilities.Cytotoxic T cells and NK cells showed enhanced pathogen-fighting abilities.Activated MCs,secreted chemokine(C-C motif)ligand 5(CCL5),promoted neutrophil and macrophage infiltration and contributed to barrier dysfunction.CONCLUSION These findings enrich our understanding of biological processes and mechanisms in AP-associated intestinal injury,suggesting that CCL5 from MCs is a potential target for addressing dysfunction.
基金National Key Research and Development Program of China(2021YFC2103003)National Natural Science Foundation of China(31972604)+1 种基金Jinan Introductory Innovation Team Project(No.202228037)China Postdoctoral Science Foundation(2023M730998).
文摘Background AflatoxinB1(AFB_(1))is a prevalent contaminant in agricultural products,presenting significant risks to animal health.CotA laccase from Bacillus licheniformis has shown significant efficacy in degrading mycotoxins in vitro test.The efficacy of Bacillus CotA laccase in animals,however,remains to be confirmed.A 2×2 factorial design was used to investigate the effects of Bacillus CotA laccase level(0 or 1 U/kg),AFB_(1) challenge(challenged or unchal-lenged)and their interactions on ducks.The purpose of this study was to evaluate the efficacy of Bacillus CotA laccase in alleviatingAFB_(1) toxicosis of ducks.Results Bacillus CotA laccase alleviatedAFB_(1)-induced declines in growth performance of ducks accompanied by improved average daily gain(ADG)and lower feed/gain ratio(F/G).Bacillus CotA laccase amelioratedAFB_(1)-induced gut barrier dysfunctions and inflammation testified by increasing the jejunal villi height/crypt depth ratio(VH/CD)and the mRNA expression of tight junction protein 1(TJP1)and zonula occluden-1(ZO-1)as well as decreasing the expression of inflammation-related genes in the jejunum of ducks.Amino acid metabolome showed that Bacillus CotA laccase amelioratedAFB_(1)-induced amino acid metabolism disorders evidenced by increasing the level of glu-tamic acid in serum and upregulating the expression of amino acid transport related genes in jejunum of ducks.Bacil-lus CotA laccase amelioratedAFB_(1)-induced liver injury testified by suppressing oxidative stress,inhibiting apoptosis,and downregulating the expression of hepatic metabolic enzyme related genes of ducks.Moreover,Bacillus CotA laccase degradedAFB_(1) in digestive tract of ducks,resulting in the reduced absorption level ofAFB_(1) across intestinal epithelium testified by the decreased level ofAFB_(1)-DNA adduct in the liver,and the reduced content ofAFB_(1) residues in liver and feces of ducks.Conclusions Bacillus CotA laccase effectively improved the growth performance,intestinal health,amino acid metabolism and hepatic aflatoxin metabolism of ducks fedAFB_(1) diets,highlighting its potential as an efficient and safe feed enzyme forAFB_(1) degradation in animal production.
基金Supported by the National Natural Science Foundation of China,No.82160113the“Xingdian Talents”Support Project of Yunnan Province,No.RLMY20220007+1 种基金the Yunnan Province Clinical Research Center for Digestive Diseases,No.202102AA100062the Applied Basic Research Projects of Yunnan Province,No.2019FE001-039.
文摘BACKGROUND External factors in ulcerative colitis(UC)exacerbate colonic epithelial permea-bility and inflammatory responses.Keratin 1(KRT1)is crucial in regulating these alterations,but its specific role in the progression of UC remains to be fully eluci-dated.AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC.METHODS A KRT1 antibody concentration gradient test,along with a dextran sulfate sodium(DSS)-induced animal model,was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system(KKS)and the cleavage of bradykinin(BK)/high molecular weight kininogen(HK)in UC.RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation,induced apoptosis,reduced HK expression,and increased BK expression.It further downregulated intestinal barrier proteins,including occludin,zonula occludens-1,and claudin,and negatively impacted the coagulation factor XII.These changes led to enhanced activation of BK and HK cleavage,thereby intensifying KKS-mediated inflammation in UC.In the DSS-induced mouse model,administration of KRT1 antibody mitigated colonic injury,increased colon length,alleviated weight loss,and suppressed inflammatory cytokines such as interleukin(IL)-1,IL-6,tumor necrosis factor-α.It also facilitated repair of the intestinal barrier,reducing DSS-induced injury.CONCLUSION KRT1 inhibits BK expression,suppresses inflammatory cytokines,and enhances markers of intestinal barrier function,thus ameliorating colonic damage and maintaining barrier integrity.KRT1 is a viable therapeutic target for UC.
基金National Natural Science Foundation of China(31730091)the National Key Research and Development Program of China(2017YFD0500503).
文摘This study was conducted to investigate host-microbiota interactions and explore the effects of maternal gut microbiota transplantation on the growth and intestinal functions of newborns in a germ-free(GF)pig model.Twelve hysterectomy-derived GF Bama piglets were reared in 6 sterile isolators.Among them,6 were considered as the GF group,and the other 6 were orally inoculated with healthy sow fecal suspension as fecal microbiota transplanted(FMT)group.Another 6 piglets from natural birth were regarded as the conventional(CV)group.The GF and FMT groups were hand-fed with Co60-y-irradiated sterile milk powder,while the CV group was reared by lactating Bama sows.All groups were fed for 21 days.Then,all piglets and then were switched to sterile feed for another 21 days.Results showed that the growth performance,nutrient digestibility,and concentrations of short-chain fatty acids in the GF group decreased(P<0.05).Meanwhile,the serum urea nitrogen concentration and digesta pH values in the GF group increased compared with those in the FMT and CV groups(P<0.05).Compared with the CV group,the GF group demonstrated upregulation in the mRNA expression levels of intestinal barrier function-related genes in the small intestine(P<0.05).In addition,the mRNA abundances of intestinal development and absorption-related genes in the small intestine and colon were higher in the GF group than in the CV and FMT groups(P<0.05).The FMT group exhibited greater growth performance,lipase activity,and nutrient digestibility(P<0.05),higher mRNA expression levels of intestinal development and barrier-related genes in the small intestine(P<0.05),and lower mRNA abundances of pro-inflammatory factor in the colon and jejunum(P<0.05)than the CV group.In conclusion,the absence of gut microbes impaired the growth and nutrient digestibility,and healthy sow gut microbiota transplantation increased the growth and nutrient digestibility and improved the intestinal development and barrier function of newborn piglets,indicating the importance of intestinal microbes for intestinal development and functions.
基金The study was reviewed and approved by the Fourth Hospital of Hebei Medical University Institutional Review Board(Approval No.2019082).
文摘BACKGROUND We previously showed,using the Traditional Chinese Medicine System Pharmacology Database,that Gegen Qinlian decoction(GQD)had a direct antitumor effect,and was combined with programmed cell death protein(PD)-1 inhibitors to treat microsatellite stable(MSS)tumor-bearing mice.However,the effect of GQD on patients with colorectal cancer(CRC)is not clear.AIM To determine the therapeutic mechanism of GQD in improving immune function,reducing inflammation and protecting intestinal barrier function.METHODS Seventy patients with CRC were included in this study:37 in the control group and 33 in the treatment group.The proportions of CD4+T,CD8+T,natural killer(NK),NKT and T regulatory cells were measured by flow cytometry.Levels of the cytokines tumor necrosis factor(TNF)-α,interferon(IFN)-γ,interleukin(IL)-2,IL-6,IL-10 and serotonin(5-hydroxytryptamine;5-HT)in serum were assessed by enzyme-linked immunosorbent assay(ELISA).The expression of zonula occludens(ZO)-1,occludin,nuclear factor(NF)-κB and TNF-αin tumor and normal tissues was measured by immunohistochemistry.The composition of gut microbiota from patients in the treatment group was assessed using 16S rDNA analysis.RESULTS There were no adverse events in the treatment group.The proportion of CD4+T cells and NKT cells in the post-treatment group was significantly higher than that in the pre-treatment and control groups(P<0.05).The level of TNF-αin the posttreatment group was significantly lower than that in the pre-treatment and control groups(P<0.05).The concentration of 5-HT in the post-treatment group was significantly lower than that in the pre-treatment group(P<0.05).The expression of ZO-1 and occludin in tumor tissues in the treatment group was significantly higher than that in the control group(P<0.05).The expression of ZO-1 in normal tissues of the treatment group was significantly higher than that in the control group(P=0.010).Compared with the control group,expression of NF-κB and TNF-αin tumor tissues of the treatment group was significantly decreased(P<0.05).Compared with the pre-treatment group,GQD decreased the relative abundance of Megamonas and Veillonella.In addition,GQD increased the relative abundance of Bacteroides,Akkermansia and Prevotella.CONCLUSION GQD enhances immunity and protects intestinal barrier function in patients with CRC by regulating the composition of gut microbiota.
文摘AIM: To evaluate the effects of combined treatment of glutamine (Gln) and recombinant human growth hormone(rhGH) on intestinal barrier function following portal hypertension surgery. METHODS: This study was designed as a prospective, randomized and controlled clinical trial. Forty two patients after portal hypertension surgery were randomly assigned into 2 groups: control group (n = 20) and supplemental group (adding Gin and rhGH, n = 22). Every patient received isocaloric and isonitrogenous standard total parenteral nutrition (TPN) starting 3 d after surgery for 7 d. Blood samples were obtained before surgery and at the 3rd and 10th day postoperatively. Host immunity was evaluated by measuring levels of CD4, CD8, CD4/CD8, IgG, IgM and IgA, and the inflammatory responses were determined by assessing IL-2, TNF-α and C-reactive protein (CRP) levels. Intestinal permeability and integrity was evaluated by L/M test and histological examination, respectively. RESULTS: On postoperative d 10, CD4, CD4/CD8, IgG and IL-2 levels in supplemental group were significantly higher than those in control group (33.7±5.5 vs 31.0 ± 5.4, P 〈 0.05, (1.17±0.32 vs 1.05 ± 0.15, P 〈 0.05, 13.94±1.09 vs 12.33±1.33, P 〈 0.05, and 368.12 ± 59.25 vs 318.12 ± 45.65, P 〈 0.05, respectively), whereas the increase in serum TNF-α concentration was significantly reduced (41.02 ± 27.56 vs 160.09 ± 35.17, P 〈 0.05). The increase in L/M ratio was significantly lower in the supplemental group than in the control group (0.0166 ± 0.0017 vs 0.0339 ± 0.0028, P 〈 0.05). Moreover, mucosal integrity in the supplemental group was better than in the control group.CONCLUSION: Postoperative administration of TPN supplemented with Gin and rhGH in patients after portal hypertension surgery improves immune function, modulates inflammatory response, prevents the intestinal mucous membrane from atrophy and preserves intestinal integrity.
基金supported by grants from the National Basic Research Program (973) of China (2007CB513005, 2009CB522406)a Research Grant awarded by the Health Bureau Fund ofZhejiang Province (2007QN006, 2008A050)
文摘BACKGROUND: Most patients waiting for liver transplantation have end-stage liver diseases with malnutrition, which is prone to induce intestinal barrier dysfunction after liver transplantation. We aimed to study the effect of probiotics on intestinal barrier function in malnourished rats following liver transplantation with long-term antibiotics. METHODS: Twelve Lewis rats were selected as donors. Twelve BN rats, which served as recipients, were subjected to malnutrition by semi-starvation for 4-5 weeks. They were randomly divided into two groups: a control group which received phosphate-buffered saline and a probiotics group which received Bifidobacterium and Lactobacillus. All recipients were injected with intramuscular imipenem and subcutaneous cyclosporine A. Furthermore, six normal BN rats without any drugs or operations served as a normal group. Eight days after operation, all rats were sacrificed for examination of the following parameters: serum levels of endotoxin and TNF-α, bacterial translocation, intestinal microflora, ileocecal sIgA, lymphocyte numbers, and phenotypes (CD4, CD8, αβTCR, γδTCR)ofPeyer’spatches. RESULTS: In recipients subjected to malnutrition, weight decreased by 20% and they survived until 8 days after operation. Compared with the normal group, all recipients on postoperative day 8 showed increased levels of serum endotoxin and TNF-α as well as increased counts oftranslocated bacteria. Meanwhile, there were decreases in counts of Bifidobacterium and Lactobacillus in the ileocecum, sIgA concentration, and lymphocytes of Peyer’s patches. Moreover, partial alteration in lymphocyte phenotypes was evidenced by elevated ratios of CD8 + and γδTCR + lymphocytes. In contrast, compared to the control group, supplementation with probiotics reduced the levels of serum endotoxin, TNF-α and bacterial translocation, increased the counts of Bifidobacterium and Lactobacillus, the concentration of sIgA and lymphocytes of Peyer’s patches, and also slightly restored the alteration of lymphocyte phenotypes. CONCLUSION: Supplementation with probiotics including Bifidobac-terium and Lactobacillus promoted partial restoration of intestinal microflora and improved intestinal barrier function in malnourished rats after liver transplantation with long-term use of antibiotics.
基金supported by grants from the National Basic Research Program(973)of China(2007CB513005 and 2009CB522406)the Health Bureau Fund of Zhejiang Province(2008A050)
文摘BACKGROUND:Most patients after liver transplantation (LT) suffer from intestinal barrier dysfunction.Glycyl-glutamine (Gly-Gln) by parenteral supplementation is hydrolyzed to release glutamine,which improves intestinal barrier function in intestinal injury.This study aimed to investigate the effect of GlyGln by enteral supplementation on intestinal barrier function in rats after allogenetic LT under immunosuppressive therapy.METHODS:Twelve inbred Lewis rats were selected randomly as donors,and 24 inbred Brown Norway (BN) rats as recipients of allogenetic LT.The recipients were divided into a control group (Ala,n=12) and an experimental group (Gly-Gln,n=12).In each group,6 normal BN rats were sampled for normal parameters on preoperative day 3.The 6 recipients in the control group received alanine (Ala) daily by gastric perfusion for 3 preoperative days and 7 postoperative days,and the 6 recipients in the experimental group were given Gly-Gln in the same manner.The 12 BN recipients underwent orthotopic LT under sterile conditions after a 3-day fast and were given immunosuppressive therapy for 7 days.They were harvested for sampling on postoperative day 8.The following parameters were assessed:intestinal mucosal protein content,mucosal ultrastructure,ileocecal sIgA content,portal plasma levels of endotoxin and TNF-α,and bacterial translocation.RESULTS:All recipients were alive after LT.On preoperative day 3,all parameters were similar in the two groups.On postoperative day 8,all parameters in the two groups were remarkably changed from those on preoperative day 3.However,compared to the Ala group,supplementation withGly-Gln increased the levels of intestinal mucosal protein and ileocecal sIgA,improved mucosal microvilli,and decreased portal plasma levels of endotoxin and TNF-α as well as bacterial translocation.CONCLUSION:Enteral supplementation with Gly-Gln improved intestinal barrier function after allogenetic LT in rats.
基金supported by the National Key R&D Program of China(2017YFE0114400).
文摘Background Lactulose as an effective prebiotic protects intestinal mucosal injury.Bacillus coagulans is widely used in feed additives because of its ability to promote intestinal health.Our previous study suggests that the combination of lactulose and Bacillus coagulans may be a good candidate as alternative for antibiotic growth promoters.However,the in vivo effects of lactulose and Bacillus coagulans on growth and intestinal health under immune challenge in piglets remains unclear.The objective of this study is to explore the protective effects of synbiotic containing lactu-lose and Bacillus coagulans on the intestinal mucosal injury and barrier dysfunction under immune challenge in weaned piglets.Methods Twenty four weaned piglets were assigned to 4 groups.Piglets in the CON-_(saline)and LPS-_(LPS)group were fed the basal diet,while others were fed either with chlortetracycline(CTC)or synbiotic mixture of lactulose and Bacillus coagulans for 32 d before injection of saline or lipopolysaccharide(LPS).Piglets were sacrificed 4 h after LPS injection to collect samples to determine intestinal morphology,integrity and barrier functions as well as relative genes and proteins.Results Our data showed that no differences were observed in the growth performance of the four test groups.LPS injection induced higher serum diamine oxidase activities,D-lactic acid levels,and endotoxin status,lower villus height and ratio of villus height to crypt depth,greater mRNA and lower protein expression related tight junction in both jejunum and ileum.In addition,a higher apoptosis index,and protein expression of Bax and caspase-3 were also observed in the LPS challenge group.Interestingly,dietary synbiotic mixture with lactulose and Bacillus coagulans protected against LPS-induced intestinal damage,barrier dysfunction and higher apoptosis as well as CTC.Conclusions Our data suggest that dietary supplementation of synbiotic mixture with lactulose and Bacillus coagu-lans showed resilience to LPS-induced intestinal morphological damage,barrier dysfunction and aggressive apoptosis in piglets as well as the protective effects of CTC.These results indicate that synbiotic mixture of lactulose and Bacillus coagulans showed beneficial effects on performance and resilience to acute immune stress in weaned piglets.
基金Supported by The National Natural Science Foundation Key Projects of China,No.81230057National Natural Science Foundation of China,No.81172325The Major Basic Research Program of Shanghai,No.12DZ1930502
文摘AIM: To investigate the protective effects of combinations of probiotic (Bifico) on interleukin (IL)-10-gene-deficient (IL-10 KO) mice and Caco-2 cell monolayers.