期刊文献+
共找到10,395篇文章
< 1 2 250 >
每页显示 20 50 100
NLRP3 inflammasome and gut microbiota–brain axis:A new perspective on white matter injury after intracerebral hemorrhage 被引量:1
1
作者 Xiaoxi Cai Xinhong Cai +4 位作者 Quanhua Xie Xueqi Xiao Tong Li Tian Zhou Haitao Sun 《Neural Regeneration Research》 2026年第1期62-80,共19页
Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have rev... Intracerebral hemorrhage is the most dangerous subtype of stroke,characterized by high mortality and morbidity rates,and frequently leads to significant secondary white matter injury.In recent decades,studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota–brain axis.This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.The NACHT,LRR,and pyrin domain-containing protein 3(NLRP3)inflammasome plays a crucial role in this context.This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome.These mechanisms include metabolic pathways(involving short-chain fatty acids,lipopolysaccharides,lactic acid,bile acids,trimethylamine-N-oxide,and tryptophan),neural pathways(such as the vagus nerve and sympathetic nerve),and immune pathways(involving microglia and T cells).We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage.The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood–brain barrier,inducing neuroinflammation,and interfering with nerve regeneration.Finally,we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury.Our review highlights the critical role of the gut microbiota–brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage,paving the way for exploring potential therapeutic approaches. 展开更多
关键词 gut microbiota gut microbiota–brain axis immune intracerebral hemorrhage NEUROINFLAMMATION NLRP3 protein stroke THERAPEUTICS white matter injury
暂未订购
Positive impact of indicaxanthin from Opuntia ficusindica fruit on high-fat diet–induced neuronal damage and gut microbiota dysbiosis
2
作者 Simona Terzo Antonella Amato +12 位作者 Pasquale Calvi Marta Giardina Domenico Nuzzo Pasquale Picone Antonio Palumbo-Piccionello Sara Amata Ilenia Concetta Giardina Alessandro Massaro Ignazio Restivo Alessandro Attanzio Luisa Tesoriere Mario Allegra Flavia Mulè 《Neural Regeneration Research》 2026年第1期324-332,共9页
Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxa... Indicaxanthin is a betalain that is abundant in Opuntia ficus-indica orange fruit and has antioxidative and anti-inflammatory effects. Nevertheless, very little is known about the neuroprotective potential of indicaxanthin. This study investigated the impact of indicaxanthin on neuronal damage and gut microbiota dysbiosis induced by a high-fat diet in mice. The mice were divided into three groups according to different diets: the negative control group was fed a standard diet;the high-fat diet group was fed a high-fat diet;and the high-fat diet + indicaxanthin group was fed a high-fat diet and received indicaxanthin orally(0.86 mg/kg per day) for 4 weeks. Brain apoptosis, redox status, inflammation, and the gut microbiota composition were compared among the different animal groups. The results demonstrated that indicaxanthin treatment reduced neuronal apoptosis by downregulating the expression of proapoptotic genes and increasing the expression of antiapoptotic genes. Indicaxanthin also markedly decreased the expression of neuroinflammatory proteins and genes and inhibited high-fat diet–induced neuronal oxidative stress by reducing reactive oxygen and nitrogen species, malondialdehyde, and nitric oxide levels. In addition, indicaxanthin treatment improved the microflora composition by increasing the abundance of healthy bacterial genera, known as producers of short-chain fatty acids(Lachnospiraceae, Alloprovetella, and Lactobacillus), and by reducing bacteria related to unhealthy profiles(Blautia, Faecalibaculum, Romboutsia and Bilophila). In conclusion, indicaxanthin has a positive effect on high-fat diet–induced neuronal damage and on the gut microbiota composition in obese mice. 展开更多
关键词 gut microbiota dysbiosis high-fat diet indicaxanthin MICROFLORA neuronal apoptosis NEURODEGENERATION NEUROINFLAMMATION obesity Opuntia ficus-indica fruit
暂未订购
Peripheral nervous system and gut microbiota:Emerging evidence on increased mechanistic understanding to reveal innovative strategies for peripheral nerve regeneration
3
作者 Giulia Ronchi Matilde Cescon +1 位作者 Giovanna Gambarotta Kirsten Haastert-Talini 《Neural Regeneration Research》 2026年第4期1560-1561,共2页
The gut microbiota:The human body is colonized by a diverse and complex microbial community–including bacteria,viruses,archaea,and unicellular eukaryotes–that plays a central role in human wellbeing.Indeed,microbiot... The gut microbiota:The human body is colonized by a diverse and complex microbial community–including bacteria,viruses,archaea,and unicellular eukaryotes–that plays a central role in human wellbeing.Indeed,microbiota is crucial for several functions,including host metabolism,physiology,maintenance of the intestinal epithelial integrity,nutrition,and immune function,earning it the designation of a“vital organ”(Guinane and Cotter,2013). 展开更多
关键词 unicellular eukaryotes human wellbeing gut microbiota peripheral nerve regeneration microbial community peripheral nervous system microbial community including host metabolism
暂未订购
Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury 被引量:2
4
作者 Xinyu You Lin Niu +4 位作者 Jiafeng Fu Shining Ge Jiangwei Shi Yanjun Zhang Pengwei Zhuang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2153-2168,共16页
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati... Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.” 展开更多
关键词 traumatic brain injury brain-gut-microbiome axis gut microbiota NEUROIMMUNE immunosuppression host defense vagal afferents bacterial infection dorsal root ganglia nociception neural circuitry
暂未订购
Unraveling brain aging through the lens of oral microbiota 被引量:1
5
作者 Qinchao Hu Si Wang +2 位作者 Weiqi Zhang Jing Qu Guang-Hui Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期1930-1943,共14页
The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even... The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging. 展开更多
关键词 Alzheimer's disease brain aging multiple sclerosis NEURODEGENERATION neurodegenerative diseases oral microbiota Parkinson's disease PERIODONTITIS BACTERIA Porphyromonas gingivalis
暂未订购
Creeping fat and gut microbiota in Crohn’s disease 被引量:1
6
作者 Ana EV Quaglio Daniéla O Magro +3 位作者 Marcello Imbrizi Ellen CS De Oliveira Luiz C Di Stasi Ligia Y Sassaki 《World Journal of Gastroenterology》 SCIE CAS 2025年第1期16-23,共8页
In this article,we explored the role of adipose tissue,especially mesenteric adipose tissue and creeping fat,and its association with the gut microbiota in the pathophysiology and progression of Crohn’s disease(CD).C... In this article,we explored the role of adipose tissue,especially mesenteric adipose tissue and creeping fat,and its association with the gut microbiota in the pathophysiology and progression of Crohn’s disease(CD).CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract,influenced by genetic predisposition,gut microbiota dysbiosis,and environmental factors.Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD.Further,visceral adipose tissue,particularly creeping fat,a mesenteric adipose tissue characterized by hypertrophy and fibrosis,has been implicated in CD pathogenesis,inflammation,and fibrosis.The bacteria from the gut microbiota may translocate into mesenteric adipose tissue,contributing to the formation of creeping fat and influencing CD progression.Although creeping fat may be a protective barrier against bacterial invasion,its expansion can damage adjacent tissues,leading to complications.Modulating gut microbiota through interventions such as fecal microbiota transplantation,probiotics,and prebiotics has shown potential in managing CD.However,more research is needed to clarify the mechanisms linking gut dysbiosis,creeping fat,and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD. 展开更多
关键词 Creeping fat Mesenteric adipose tissue Gut microbiota Crohn’s disease Inflammatory bowel disease
暂未订购
Gut microbiota-astrocyte axis: new insights into age-related cognitive decline 被引量:2
7
作者 Lan Zhang Jingge Wei +5 位作者 Xilei Liu Dai Li Xiaoqi Pang Fanglian Chen Hailong Cao Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第4期990-1008,共19页
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati... With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition. 展开更多
关键词 age aging Alzheimer’s disease ASTROCYTES cognitive decline dementia gut microbiota gut–brain axis microbial metabolites NEUROINFLAMMATION Parkinson’s disease
暂未订购
Effects of Soybean Oligosaccharides Extracted from Defatted Soybean Meal on Gut Microbiota and Metabolites during in Vitro Fermentation Process 被引量:1
8
作者 SU Tingting YANG Xiyuan +6 位作者 YU Qiaoru WU Mengna XU Lei WANG Hui MU Xindi YAO Di WANG Changyuan 《食品科学》 北大核心 2025年第11期164-179,共16页
To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subseq... To investigate the in vitro digestion and fermentation properties of soybean oligosaccharides(SBOS)extracted from defatted soybean meal,the changes in monosaccharide composition and molecular mass were analyzed.Subsequently,the effect of SBOS on microbial community structure and metabolites was studied by 16S rRNA gene sequencing and untargeted metabolomics based on liquid chromatography-mass spectrometry.Results showed that SBOS was not easily enzymolyzed during simulated digestion and could reach the large intestine through the digestive system.The significant decrease in the molecular mass of SBOS after in vitro fermentation indicated its utilization by the gut microbiota,which increased the contents of short-chain fatty acids and lactic acid,thereby reducing the pH of the fermentation broth.Moreover,the core community was found to consist of Blautia,Lactobacillaceae,and Pediococcus.SBOS up-regulated beneficial differential metabolites such as myo-inositol,lactose,and glucose,which were closely related to galactose,amino sugar,and nucleotide sugar metabolism.This study will provide a reference for exploring the relationship between the gut microbiota and the metabolites of SBOS,and provide a basis for the development and application of SBOS as an ingredient for functional products. 展开更多
关键词 soybean oligosaccharides simulated digestion fecal fermentation gut microbiota METABOLITES
暂未订购
Gut microbiota plays a key role in the development of colorectal cancer 被引量:1
9
作者 Ying-Ling Liu Jie Liu 《World Journal of Gastroenterology》 2025年第14期168-171,共4页
This letter addresses the recently published manuscript by Darnindro et al,which investigates the diversity and composition of colonic mucosal microbiota in Indonesian patients with and without colorectal cancer(CRC).... This letter addresses the recently published manuscript by Darnindro et al,which investigates the diversity and composition of colonic mucosal microbiota in Indonesian patients with and without colorectal cancer(CRC).Although the analysis revealed no statistically significant differences in alpha diversity between the CRC and non-CRC groups,the authors identified notable distinctions in the composition and diversity of colonic mucosal microbiota among patients with CRC compared to those without.At the genus level,a statistically significant difference in microbiota composition was documented between the two cohorts.Specifically,the genera Bacteroides,Campylobacter,Peptostreptococcus,and Parvimonas were found to be elevated in individuals with CRC,while Faecalibacterium,Haemophilus,and Phocaeicola were more prevalent in the non-CRC group. 展开更多
关键词 Colorectal cancer Gut microbiota Microbial dysbiosis Intratumoral microbiota Gut metabolites
暂未订购
Helicobacter pylori infection and gastric microbiota:Insights into gastric and duodenal ulcer development 被引量:3
10
作者 Yan Pan Fu-Yong Jiao 《World Journal of Gastroenterology》 2025年第7期146-148,共3页
Helicobacter pylori(H.pylori)infection plays a critical role in gastric diseases,impacting the microbiota structure in gastric and duodenal ulcers.In their study,Jin et al utilized metagenomic sequencing to analyze mu... Helicobacter pylori(H.pylori)infection plays a critical role in gastric diseases,impacting the microbiota structure in gastric and duodenal ulcers.In their study,Jin et al utilized metagenomic sequencing to analyze mucosal samples from patients with ulcers and healthy controls,revealing significant changes in microbial diversity and composition.This article reviews their findings,emphasizing H.pylori’s role in gastric ulcers and the need for further research on its impact on duodenal ulcers.We evaluate the study’s strengths and limitations,suggesting future research directions to enhance our understanding of H.pylori’s contribution to ulcerative diseases. 展开更多
关键词 Helicobacter pylori Gastric ulcer Duodenal ulcer Metagenomic sequencing microbiota diversity Ulcer pathogenesis
暂未订购
Longitudinal assessment of peripheral organ metabolism and the gut microbiota in an APP/PS1 transgenic mouse model of Alzheimer’s disease 被引量:1
11
作者 Hongli Li Jianhua Huang +4 位作者 Di Zhao Lemei Zhu Zheyu Zhang Min Yi Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第10期2982-2997,共16页
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei... Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies. 展开更多
关键词 Alzheimer’s disease APP/PS1 mice brain-kidney axis gut microbiota heart-brain axis liver-brain axis lung-brain axis microbiota-gut-brain axis peripheral organ metabolism spleen-brain axis
暂未订购
Interplay between creeping fat and gut microbiota: A brand-new perspective on fecal microbiota transplantation in Crohn's disease
12
作者 Ying Wang Jie Liu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期138-143,共6页
Inflammatory bowel disease,particularly Crohn's disease(CD),has been linked to modifications in mesenteric adipose tissue(MAT)and the phenomenon known as"creeping fat"(CrF).The presence of CrF is believe... Inflammatory bowel disease,particularly Crohn's disease(CD),has been linked to modifications in mesenteric adipose tissue(MAT)and the phenomenon known as"creeping fat"(CrF).The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD.Notably,the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence,indicating the significant role of MAT in the pathogenesis of CD.While numerous studies have indicated that dysbiosis of the gut microbiota is a critical factor in the development of CD,the functional implications of translocated microbiota within the MAT of CD patients remain ambiguous.This manuscript commentary discusses a recent basic research conducted by Wu et al.In their study,intestinal bacteria from individuals were transplanted into CD model mice,revealing that fecal microbiota trans-plantation(FMT)from healthy donors alleviated CD symptoms,whereas FMT from CD patients exacerbated these symptoms.Importantly,FMT was found to affect intestinal permeability,barrier function,and the levels of proinflammatory factors and adipokines.Collectively,these findings suggest that targeting MAT and CrF may hold therapeutic potential for patients with CD.However,the study did not evaluate the composition of the intestinal microbiota of the donors or the subsequent alterations in the gut microbiota.Overall,the gut microbiota plays a crucial role in the histopathology of CD,and thus,targeting MAT and CrF may represent a promising avenue for treatment in this patient population. 展开更多
关键词 Crohn's disease Mesenteric adipose tissue Creeping fat Fecal microbiota transplantation Gut microbiota
暂未订购
Dendrobium officinale polysaccharide attenuates type 2 diabetes in mice model by modulating gut microbiota and alleviating intestinal mucosal barrier damage 被引量:1
13
作者 Xiaoxia Chen Chun Chen +3 位作者 Changyang Ma Wenyi Kang Junlin Wu Xiong Fu 《Food Science and Human Wellness》 2025年第1期112-123,共12页
The purpose of this study was to investigate the hypoglycemic effect and mechanism of D endrobium officinale polysaccharide(DOP)on type 2 diabetes mellitus(T2DM)mice established by high-fat diet and streptozotocin.The... The purpose of this study was to investigate the hypoglycemic effect and mechanism of D endrobium officinale polysaccharide(DOP)on type 2 diabetes mellitus(T2DM)mice established by high-fat diet and streptozotocin.The results showed that DOP improved glycolipid metabolism and serum inflammation levels,and inhibited intestinal-derived lipopolysaccharide(LPS)translocation,suggesting that inhibiting LPS-mediated intestinal barrier damage may be a key target for DOP to alleviate T2DM.Interestingly,the study found that DOP reduced intestinal inflammation and oxidative stress levels,significantly up-regulated the mRNA expression of tight junction proteins Claudin-1,Occludin and zonula occluden-1(ZO-1),and ameliorated intestinal epithelial damage.In addition,DOP strongly inhibited the intestinal pathogenic bacteria and LPS-producing bacteria Helicobacter,Enterococcus and Desulfovibrio with a reduction rate of 95%,73% and 9%,respectively,and promoted the proliferation of anti-inflammatory bacteria Bifidobacterium and Lactobacillus by 139% and 8%,respectively.Taken together,the hypoglycemic effect of DOP was related to the protection of intestinal mucosal barrier,and its underlying mechanism lied in its excellent anti-inflammatory and gut microbiotamodulatory effects,providing a theoretical basis for developing DOP as a novel prebiotic in functional food for diabetes. 展开更多
关键词 Dendrobium officinale polysaccharide HYPOGLYCEMIC MECHANISM LIPOPOLYSACCHARIDE Gut microbiota
暂未订购
2'-Fucosyllactose modulates the function of intestinal microbiota to reduce intestinal permeability in mice colonized by feces from healthy infants 被引量:1
14
作者 Qingxue Chen Liu Yang +7 位作者 Fangqin Xiang Ignatius Man-Yau Szeto Yalu Yan Biao Liu Jinju Cheng Lu Liu Bailiang Li Sufang Duan 《Food Science and Human Wellness》 2025年第1期282-292,共11页
2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-... 2'-Fucosyllactose(2'-FL)shows the potential to support intestinal health as a natural prebiotic that bridges the gap between infant formula feeding and breastfeeding.However,the effect and mechanism of 2'-FL in improving intestinal permeability are not clear.In this study,we constructed human microbiota-associated(HMA)mouse models by colonizing healthy infant feces in mice with antibiotic-depleted intestinal microbiota.The protective effect of 2'-FL on the intestinal permeability was explored using the HMA mouse models,and the combination of metagenomics was used to analyze the possible mechanisms by which the microorganisms reduced the intestinal permeability.The results showed that 2'-FL decreased the concentration of markers of intestinal permeability(enterotoxin and diamine oxidase(DAO))and increased the expression levels of tight junctions(occludin and claudin).Metagenomics revealed the enrichment of Bifidobacterium and increased the expression of glycoside hydrolases(GHs),including GH31,GH28,and GH5.In conclusion,2'-FL strengthened intestinal permeability function by improving microbiota composition to control the translocation of harmful substance. 展开更多
关键词 2’-Fucosyllactose Intestinal permeability Intestinal microbiota BIFIDOBACTERIUM
在线阅读 下载PDF
Microbiota-related metabolites correlated with the severity of COVID-19 patients 被引量:1
15
作者 Xiao-Sen Wang Jing-Yu Wang +4 位作者 Fei Yu Ding Shi Jiao-Jiao Xie Lan-Juan Li Bao-Hong Wang 《Hepatobiliary & Pancreatic Diseases International》 2025年第5期500-510,共11页
Background:Coronavirus disease 2019(COVID-19)is a global pandemic with high mortality,and the treatment options for the severe patients remain limited.Previous studies reported the altered gut mi-crobiota in severe CO... Background:Coronavirus disease 2019(COVID-19)is a global pandemic with high mortality,and the treatment options for the severe patients remain limited.Previous studies reported the altered gut mi-crobiota in severe COVID-19.But there are no comprehensive data on the role of microbial metabolites in COVID-19 patients.Methods:We identified 153 serum microbial metabolites and assessed the changes in 72 COVID-19 pa-tients upon admission and one-month after their discharge,comparing these changes to those in 133 healthy control individuals from the outpatient department during the same period.Results:Our study revealed that microbial metabolites varied across different stages and severity of COVID-19 patients.These altered microbial metabolites included tryptophan,bile acids,fatty acids,amino acids,vitamins and those containing benzene.A total of 13 distinct microbial metabolites were identi-fied in COVID-19 patients compared to healthy controls.Notably,correlations were found among these disrupted metabolites and organ injury and inflammatory responses related to COVID-19.Furthermore,these metabolites did not restore to the normal levels one month after discharge.Importantly,two mi-crobial metabolites were the core microbial metabolites related to the severity of COVID-19 patients.Conclusions:The microbial metabolites were altered in the acute and recovery stage,correlating with dis-ease severity of COVID-19.These results indicated the important role of gut microbiota in the progression of COVID-19,and facilitated the potential therapeutic microbial target for severe COVID-19 patients. 展开更多
关键词 Coronavirus disease 2019 Gut microbiota Metabolomics Disease severity
暂未订购
Punicalagin alleviates hypercholesterolemia in mice through modulating farnesoid X receptor signaling and modulating gut microbiota 被引量:1
16
作者 Huanhuan Liu Hongli Liu +4 位作者 Chunhong Yan Jiaxiu Liu Yu Cao Guopeng Li Xiaodong Xia 《Food Science and Human Wellness》 2025年第1期175-189,共15页
Punicalagin has been demonstrated to exhibit anti-oxidant and anti-inflammatory properties,but whether and how it could impact hypercholesterolemia remains not fully explored.The aim of this study was to investigate t... Punicalagin has been demonstrated to exhibit anti-oxidant and anti-inflammatory properties,but whether and how it could impact hypercholesterolemia remains not fully explored.The aim of this study was to investigate the influence of punicalagin on hypercholesterolemia in mice and its related mechanisms.After 6 weeks'intervention,punicalagin significantly reduced serum total cholesterol and low-density lipoprotein cholesterol(LDL-C)levels in mice fed a high-fat high-cholesterol(HFHC)diet.Meanwhile,punicalagin supplementation lowered hepatic cholesterol level,which corresponded to the down-regulation of cholesterol synthesis genes(Fdps,Cyp51)and up-regulated bile acid synthesis genes(Cyp7a1,Cyp27a1).In addition,bile acid reabsorption was retarded in punicalagin-fed mice through down-regulating ileal apical sodium-dependent BA transporter(ASBT).Furthermore,intestinal farnesoid X receptor(FXR)-fibroblast growth factor 15(Fgf15)pathway was inhibited while hepatic FXR-small heterodimeric partner(SHP)pathway was activated in punicalagin group.Microbiota analysis and targeted metabolomics showed that punicalagin decreased the abundance of bile-salt hydrolase(BSH)-producing bacteria(Clostridiaceae and Bifidobacteriaceae)and the ratio of primary BAs to secondary BAs.In conclusion,the cholesterol-lowering effect of punicalagin partly through down-regulating cholesterol synthesis and increasing cholesterol catabolism,which could be achieved by regulating gut microbiota,altering bile acid composition and modulating FXR signaling pathway.These findings indicate the potential application of punicalagin-related products as an alternative strategy for hypercholesterolemia prevention and mitigation. 展开更多
关键词 PUNICALAGIN HYPERCHOLESTEROLEMIA Farnesoid X receptor Bile acid metabolism Gut microbiota
暂未订购
Akkermansia muciniphila isolated from forest musk deer ameliorates diarrhea in mice via modification of gut microbiota 被引量:1
17
作者 Yan Deng Yan Wang +4 位作者 Ying Liu Xiaoli Yang Hai Zhang Xiaochang Xue Yi Wan 《Animal Models and Experimental Medicine》 2025年第2期295-306,共12页
Background:The forest musk deer,a rare fauna species found in China,is famous for its musk secretion which is used in selected Traditional Chinese medicines.However,over-hunting has led to musk deer becoming an endang... Background:The forest musk deer,a rare fauna species found in China,is famous for its musk secretion which is used in selected Traditional Chinese medicines.However,over-hunting has led to musk deer becoming an endangered species,and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis.Accumulating evidence has demonstrated that Akkermannia muciniphila(AKK)is a promising probiotic,and we wondered whether AKK could be used as a food additive in animal breeding pro-grammes to help prevent intestinal diseases.Methods:We isolated one AKK strain from musk deer feces(AKK-D)using an im-proved enrichment medium combined with real-time PCR.After confirmation by 16S rRNA gene sequencing,a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability,simulated gas-trointestinal fluid tolerance,acid and bile salt resistance,self-aggregation ability,hy-drophobicity,antibiotic sensitivity,hemolysis,harmful metabolite production,biofilm formation ability,and bacterial adhesion to gastrointestinal mucosa.Results:The AKK-D strain has a probiotic function similar to that of the standard strain in humans(AKK-H).An in vivo study found that AKK-D significantly amelio-rated symptoms in the enterotoxigenic Escherichia coli(ETEC)-induced murine diar-rhea model.AKK-D improved organ damage,inhibited inflammatory responses,and improved intestinal barrier permeability.Additionally,AKK-D promoted the reconsti-tution and maintenance of the homeostasis of gut microflora,as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae,Muribaculum,and unclas-sified f_Lachnospiaceae compared with the diarrhea model mice.Conclusion:Taken together,our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding,although further extensive system-atic research is still needed. 展开更多
关键词 Akkermansia muciniphila DIARRHEA enterotoxigenic Escherichia coli forest musk deer gut microbiota
在线阅读 下载PDF
Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs 被引量:1
18
作者 Feng Yong Bo Liu +6 位作者 Huijuan Li Houxu Hao Yueli Fan Osmond Datsomor Rui Han Hailong Jiang Dongsheng Che 《Journal of Animal Science and Biotechnology》 2025年第3期1269-1295,共27页
Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship b... Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites. 展开更多
关键词 Dietary fiber Energy metabolism Fermentation characteristics Growing pigs Gut microbiota Nutrient utilization Physicochemical properties
在线阅读 下载PDF
Exploring gut microbiota as a novel therapeutic target in Crohn’s disease: Insights and emerging strategies
19
作者 Tong Qiao Xian-Hui Wen 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期147-156,共10页
Extensive research has investigated the etiology of Crohn’s disease(CD),encompassing genetic predisposition,lifestyle factors,and environmental triggers.Recently,the gut microbiome,recognized as the human body’s sec... Extensive research has investigated the etiology of Crohn’s disease(CD),encompassing genetic predisposition,lifestyle factors,and environmental triggers.Recently,the gut microbiome,recognized as the human body’s second-largest gene pool,has garnered significant attention for its crucial role in the patho-genesis of CD.This paper investigates the mechanisms underlying CD,focusing on the role of‘creeping fat’in disease progression and exploring emerging therapeutic strategies,including fecal microbiota transplantation,enteral nutri-tion,and therapeutic diets.Creeping fat has been identified as a unique patho-logical feature of CD and has recently been found to be associated with dysbiosis of the gut microbiome.We characterize this dysbiotic state by identi-fying key microbiome-bacteria,fungi,viruses,and archaea,and their contributions to CD pathogenesis.Additionally,this paper reviews contemporary therapies,empha-sizing the potential of biological therapies like fecal microbiota transplantation and dietary interventions.By elucidating the complex interactions between host-microbiome dynamics and CD pathology,this article aims to advance our under-standing of the disease and guide the development of more effective therapeutic strategies for managing CD. 展开更多
关键词 Crohn’s disease Gut microbiome DYSBIOSIS Creeping fat Fecal microbiota transplantation
暂未订购
Fecal microbiota transplantation in allergic diseases
20
作者 Ece TüsüzÖnata ÖnerÖzdemir 《World Journal of Methodology》 2025年第2期83-91,共9页
Microorganisms such as bacteria,fungi,viruses,parasites living in the human intestine constitute the human intestinal microbiota.Dysbiosis refers to composi-tional and quantitative changes that negatively affect healt... Microorganisms such as bacteria,fungi,viruses,parasites living in the human intestine constitute the human intestinal microbiota.Dysbiosis refers to composi-tional and quantitative changes that negatively affect healthy gut microbiota.In recent years,with the demonstration that many diseases are associated with dysbiosis,treatment strategies targeting the correction of dysbiosis in the treat-ment of these diseases have begun to be investigated.Faecal microbiota trans-plantation(FMT)is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit.FMT studies have gained popularity after probiotic,prebiotic,symbiotic studies in the treatment of dysbiosis and related diseases.FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance(T helper 1/T helper 2 cells)and thus suppression of allergic responses.In this article,the definition,application,safety and use of FMT in allergic diseases will be discussed with current data. 展开更多
关键词 microbiota DYSBIOSIS Faecal microbiota transplantation Allergic diseases
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部