There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling ...There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery.展开更多
Recent years have witnessed an increasing interest in interval-valued data analysis. As one of the core topics, linear regression attracts particular attention. It attempts to model the relationship between one or mor...Recent years have witnessed an increasing interest in interval-valued data analysis. As one of the core topics, linear regression attracts particular attention. It attempts to model the relationship between one or more explanatory variables and a response variable by fitting a linear equation to the interval-valued observations. Despite of the well-known methods such as CM, CRM and CCRM proposed in the literature, further study is still needed to build a regression model that can capture the complete information in interval-valued observations. To this end, in this paper, we propose the novel Complete Information Method (CIM) for linear regression modeling. By dividing hypercubes into informative grid data, CIM defines the inner product of interval-valued variables, and transforms the regression modeling into the computation of some inner products. Experiments on both the synthetic and real-world data sets demonstrate the merits of CIM in modeling interval-valued data, and avoiding the mathematical incoherence introduced by CM and CRM.展开更多
Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functio...Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functions,(light)interval-valued pre-t-norms were initially proposed by Wang and Hu,but their properties were not further discussed by the authors.The main purpose of this paper is to study in depth the properties and generation of(light)intervalvalued pre-t-norms.Firstly,several properties of(light)interval-valued pre-t-norms and their relationship with(light)pre-t-norms are presented.Then,two different generation methods for(light)interval-valued pre-t-norms are introduced.Finally,it demonstrates a specific application of(light)interval-valued pre-t-norms in constructing interval-valued directional monotonic fuzzy implications,namely,using the(light)interval-valued pre-t-norm IT,interval-valued fuzzy negations IN,and(light)interval-valued pre-t-conorm IS to construct interval-valued QL-directional monotonic operations.展开更多
To analyze the complexity of interval-valued time series(ITSs),a novel interval multiscale sample entropy(IMSE)methodology is proposed in this paper.To validate the effectiveness and feasibility of IMSE in characteriz...To analyze the complexity of interval-valued time series(ITSs),a novel interval multiscale sample entropy(IMSE)methodology is proposed in this paper.To validate the effectiveness and feasibility of IMSE in characterizing ITS complexity,the method is initially implemented on simulated time series.The experimental results demonstrate that IMSE not only successfully identifies series complexity and long-range autocorrelation patterns but also effectively captures the intrinsic relationships between interval boundaries.Furthermore,the test results show that IMSE can also be applied to measure the complexity of multivariate time series of equal length.Subsequently,IMSE is applied to investigate interval temperature series(2000–2023)from four Chinese cities:Shanghai,Kunming,Chongqing,and Nagqu.The results show that IMSE not only distinctly differentiates temperature patterns across cities but also effectively quantifies complexity and long-term autocorrelation in ITSs.All the results indicate that IMSE is an alternative and effective method for studying the complexity of ITSs.展开更多
While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitiv...While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitive results.To address these shortcomings,this paper introduces two novel divergencemeasures for IvPFSs,inspired by the Jensen-Shannon divergence.The fundamental properties of the proposed measures-non-degeneracy,symmetry,triangular inequality,and boundedness-are rigorously proven.Comparative analyses with existing measures are conducted through specific cases and numerical examples,clearly demonstrating the advantages of our approach.Furthermore,we apply the new divergence measures to develop an enhanced interval-valued picture fuzzy TOPSIS method for risk assessment in construction projects,showing the practical applicability and effectiveness of our contributions.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy imp...The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.展开更多
The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membersh...The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.展开更多
Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty co...Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.展开更多
The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued in...The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets(IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality.Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution(TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.展开更多
Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-...Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among elements and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponentially complex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is developed. Finally, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibility.展开更多
This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-tional programming problem with interval coefficients in the objective function. It is proved that we c...This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-tional programming problem with interval coefficients in the objective function. It is proved that we can convert an IVLFP to an optimization problem with interval valued objective function which its bounds are linear fractional functions. Also there is a discussion for the solutions of this kind of optimization problem.展开更多
The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming v...The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.展开更多
A fuzzy system is a novel computing technique that accesses uncertain information by fuzzy representation.In the decision-making process,fuzzy system and soft computing are effective tools that are tolerant to impreci...A fuzzy system is a novel computing technique that accesses uncertain information by fuzzy representation.In the decision-making process,fuzzy system and soft computing are effective tools that are tolerant to imprecision,uncertainty,and partial truths.Evolutionary fuzzy systems have been developed with the appearance of interval fuzzy,dual fuzzy,hesitant fuzzy,neutrosophic,plithogenic representations,etc.Moreover,by capturing compound features and convey multi-dimensional data,complex numbers are utilized to generalize fuzzy and neutrosophic fuzzy sets.In this paper,a representation of neutrosophic soft expert systems based on the real and complex numbers in the interval form is proposed.The interval-valued neutrosophic soft expert set(I-VNSES)is defined,and the interval-valued complex neutrosophic soft expert set(I-VCNSES)is formally generalized from the concept of IVNSES.For both I-VNSES and I-VCNSES,we introduce the relevant basic theoretical operations and study their properties.Based on these new concepts,a generalized algorithm is proposed and applied to handle the imbedded indeterminacy in the two-dimensional interval data.The proposed algorithm is tested on the economic factors that affected the Malaysian economy in 2020 to see which ones are the most influential.Eventually,a comparison of three current approaches is used to back up this study.展开更多
Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set,neutrosophic set,bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data ...Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set,neutrosophic set,bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data more efficiently and flexibly.Current work is an effort to design a flexible optimization model in the backdrop of interval-valued bipolar neutrosophic sets.Bipolar interval-valued neutrosophic membership grades are picked so that they indicate the restriction of the plausible infringement of the inequalities given in the problem.To prove the adequacy and effectiveness of the method a unified system of sustainable medical healthcare supply chain model with an uncertain figure of product complaints is used.Time,quality and cost are considered as satisfaction level to choose best supplier for medicine procurement.The proposed model ensures 99%satisfaction for cost reduction,63%satisfaction for the quality of product and 64%satisfaction for total time taken in medicine supply chain.展开更多
In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group dec...In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41272359&11001019)the Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP)the Fundamental Research Funds for the Central Universities
文摘There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery.
基金supported in part by the National Natural Science Foundation of China(NSFC) under Grants 71031001,70771004,70901002 and 71171007the Foundation for the Author of National Excellent Doctoral Dissertation of PR China under Grant 201189the Program for New Century Excellent Talents in University under Grant NCET-1 1-0778
文摘Recent years have witnessed an increasing interest in interval-valued data analysis. As one of the core topics, linear regression attracts particular attention. It attempts to model the relationship between one or more explanatory variables and a response variable by fitting a linear equation to the interval-valued observations. Despite of the well-known methods such as CM, CRM and CCRM proposed in the literature, further study is still needed to build a regression model that can capture the complete information in interval-valued observations. To this end, in this paper, we propose the novel Complete Information Method (CIM) for linear regression modeling. By dividing hypercubes into informative grid data, CIM defines the inner product of interval-valued variables, and transforms the regression modeling into the computation of some inner products. Experiments on both the synthetic and real-world data sets demonstrate the merits of CIM in modeling interval-valued data, and avoiding the mathematical incoherence introduced by CM and CRM.
基金the National Natural Science Foundation of China(Grant No.12171294)。
文摘Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functions,(light)interval-valued pre-t-norms were initially proposed by Wang and Hu,but their properties were not further discussed by the authors.The main purpose of this paper is to study in depth the properties and generation of(light)intervalvalued pre-t-norms.Firstly,several properties of(light)interval-valued pre-t-norms and their relationship with(light)pre-t-norms are presented.Then,two different generation methods for(light)interval-valued pre-t-norms are introduced.Finally,it demonstrates a specific application of(light)interval-valued pre-t-norms in constructing interval-valued directional monotonic fuzzy implications,namely,using the(light)interval-valued pre-t-norm IT,interval-valued fuzzy negations IN,and(light)interval-valued pre-t-conorm IS to construct interval-valued QL-directional monotonic operations.
基金supported by Hubei Provincial Department of Education Science and Technology Plan Project(Grant No.B2022165)。
文摘To analyze the complexity of interval-valued time series(ITSs),a novel interval multiscale sample entropy(IMSE)methodology is proposed in this paper.To validate the effectiveness and feasibility of IMSE in characterizing ITS complexity,the method is initially implemented on simulated time series.The experimental results demonstrate that IMSE not only successfully identifies series complexity and long-range autocorrelation patterns but also effectively captures the intrinsic relationships between interval boundaries.Furthermore,the test results show that IMSE can also be applied to measure the complexity of multivariate time series of equal length.Subsequently,IMSE is applied to investigate interval temperature series(2000–2023)from four Chinese cities:Shanghai,Kunming,Chongqing,and Nagqu.The results show that IMSE not only distinctly differentiates temperature patterns across cities but also effectively quantifies complexity and long-term autocorrelation in ITSs.All the results indicate that IMSE is an alternative and effective method for studying the complexity of ITSs.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Research Project under grant number RGP1/141/46.
文摘While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitive results.To address these shortcomings,this paper introduces two novel divergencemeasures for IvPFSs,inspired by the Jensen-Shannon divergence.The fundamental properties of the proposed measures-non-degeneracy,symmetry,triangular inequality,and boundedness-are rigorously proven.Comparative analyses with existing measures are conducted through specific cases and numerical examples,clearly demonstrating the advantages of our approach.Furthermore,we apply the new divergence measures to develop an enhanced interval-valued picture fuzzy TOPSIS method for risk assessment in construction projects,showing the practical applicability and effectiveness of our contributions.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
基金supported by the National Natural Science Foundation of China(60774100)the Natural Science Foundation of Shandong Province of China(Y2007A15)
文摘The aim of this paper is to discuss the approximate rea- soning problems with interval-valued fuzzy environments based on the fully implicational idea. First, this paper constructs a class of interval-valued fuzzy implications by means of a type of impli- cations and a parameter on the unit interval, then uses them to establish fully implicational reasoning methods for interval-valued fuzzy modus ponens (IFMP) and interval-valued fuzzy modus tel- lens (IFMT) problems. At the same time the reversibility properties of these methods are analyzed and the reversible conditions are given. It is shown that the existing unified forms of α-triple I (the abbreviation of triple implications) methods for FMP and FMT can be seen as the particular cases of our methods for IFMP and IFMT.
基金supported by the National Natural Science Foundation of China (71171048)the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (CXZZ11 0185)+1 种基金the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1135)the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2011K002)
文摘The notion of the interval-valued intuitionistic fuzzy set (IVIFS) is a generalization of that of the Atanassov's intuitionistic fuzzy set. The fundamental characteristic of IVIFS is that the values of its membership function and non-membership function are intervals rather than exact numbers. There are various averaging operators defined for IVlFSs. These operators are not monotone with respect to the total order of IVIFS, which is undesirable. This paper shows how such averaging operators can be represented by using additive generators of the product triangular norm, which simplifies and extends the existing constructions. Moreover, two new aggregation operators based on the t.ukasiewicz triangular norm are proposed, which are monotone with respect to the total order of IVIFS. Finally, an application of the interval-valued intuitionistic fuzzy weighted averaging operator is given to multiple criteria decision making.
文摘Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.
基金the National Defense Pre-Research Foundation of China(No.9140A27020211JB34)
文摘The paper aims at the problem of multi-targets threat degree being hard to be evaluated accurately in complex air defense battlefield environments. Combined with multi-sensors information fusion and interval-valued intuitionistic fuzzy sets(IVIFS) theories, the target priority determination is studied. The score and accuracy functions of IVIFS are improved with thinking about the hesitating information in order to increase the rationality.Then, the influence factors of target priority and the nonlinear relationship between the influence factors and target priority are analyzed. Next, the algorithms for calculating the factor weights and sensor weights are given. Based on the theory of IVIFS and technique for order preference by similarity to an ideal solution(TOPSIS), two methods of target priority determination based on the IVIFS and TOPSIS are proposed. At last, an application example verifies the effectiveness and flexibility of the proposed algorithms.
基金supported by the National Natural Science Foundation of China(71201089)the Natural Science Foundation Youth Project of Shandong Province(ZR2012GQ005)
文摘Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among elements and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponentially complex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is developed. Finally, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibility.
文摘This paper introduces an interval valued linear fractional programming problem (IVLFP). An IVLFP is a linear frac-tional programming problem with interval coefficients in the objective function. It is proved that we can convert an IVLFP to an optimization problem with interval valued objective function which its bounds are linear fractional functions. Also there is a discussion for the solutions of this kind of optimization problem.
文摘The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.
基金Universiti Kebangsaan Malaysia Research Grant TAP-K005825.
文摘A fuzzy system is a novel computing technique that accesses uncertain information by fuzzy representation.In the decision-making process,fuzzy system and soft computing are effective tools that are tolerant to imprecision,uncertainty,and partial truths.Evolutionary fuzzy systems have been developed with the appearance of interval fuzzy,dual fuzzy,hesitant fuzzy,neutrosophic,plithogenic representations,etc.Moreover,by capturing compound features and convey multi-dimensional data,complex numbers are utilized to generalize fuzzy and neutrosophic fuzzy sets.In this paper,a representation of neutrosophic soft expert systems based on the real and complex numbers in the interval form is proposed.The interval-valued neutrosophic soft expert set(I-VNSES)is defined,and the interval-valued complex neutrosophic soft expert set(I-VCNSES)is formally generalized from the concept of IVNSES.For both I-VNSES and I-VCNSES,we introduce the relevant basic theoretical operations and study their properties.Based on these new concepts,a generalized algorithm is proposed and applied to handle the imbedded indeterminacy in the two-dimensional interval data.The proposed algorithm is tested on the economic factors that affected the Malaysian economy in 2020 to see which ones are the most influential.Eventually,a comparison of three current approaches is used to back up this study.
基金The research has been partially funded by the University of Oradea,within the Grants Competition“Scientific Research of Excellence Related to Priority Areas with Capitalization through Technology Transfer:INO-TRANSFER-UO”,Project No.323/2021.
文摘Bipolar Interval-valued neutrosophic set is another generalization of fuzzy set,neutrosophic set,bipolar fuzzy set and bipolar neutrosophic set and thus when applied to the optimization problem handles uncertain data more efficiently and flexibly.Current work is an effort to design a flexible optimization model in the backdrop of interval-valued bipolar neutrosophic sets.Bipolar interval-valued neutrosophic membership grades are picked so that they indicate the restriction of the plausible infringement of the inequalities given in the problem.To prove the adequacy and effectiveness of the method a unified system of sustainable medical healthcare supply chain model with an uncertain figure of product complaints is used.Time,quality and cost are considered as satisfaction level to choose best supplier for medicine procurement.The proposed model ensures 99%satisfaction for cost reduction,63%satisfaction for the quality of product and 64%satisfaction for total time taken in medicine supply chain.
基金Supported by the National Natural Science Foundation of China(No.60605019)
文摘In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.