When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to id...When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to identify the unknown targets densely distributed in the feature space,especially when there is interval overlap between attribute measurements of different target classes.To address these problems,a novel method based on intuitionistic fuzzy comprehensive evaluation model(IFCEM)is proposed.For numerical attributes,targets in the database are divided into individual classes and overlapping classes,and for linguistic attributes,continuous interval-valued linguistic term set(CIVLTS)is used to describe target characteristic.A cloud modelbased method and an area-based method are proposed to obtain intuitionistic fuzzy decision information of query target on numerical attributes and linguistic attributes respectively.An improved inverse weighted kernel fuzzy c-means(IWK-FCM)algorithm is proposed for solution of attribute weight vector.The possibility matrix is applied to determine the identity and category of query target.Finally,a case study composed of parameter sensitivity analysis,recognition accuracy analysis.and comparison with other methods,is taken to verify the superiority of the proposed method.展开更多
Time intervals are often associated with tuples to represent their valid time in temporal relations, where overlap join is crucial for various kinds of queries. Many existing overlap join algorithms use indices based ...Time intervals are often associated with tuples to represent their valid time in temporal relations, where overlap join is crucial for various kinds of queries. Many existing overlap join algorithms use indices based on tree structures such as quad-tree, B+-tree and interval tree. These algorithms usually have high CPU cost since deep path traversals are unavoidable, which makes them not so competitive as data-partition or plane-sweep based algorithms. This paper proposes an efficient overlap join algorithm based on a new two-layer flat index named as Overlap Interval Inverted Index (i.e., O2i Index). It uses an array to record the end points of intervals and approximates the nesting structures of intervals via two functions in the first layer, and the second layer uses inverted lists to trace all intervals satisfying the approximated nesting structures. With the help of the new index, the join algorithm only visits the must-be-scanned lists and skips all others. Analyses and experiments on both real and synthetic datasets show that the proposed algorithm is as competitive as the state-of-the-art algorithms.展开更多
基金supported by the Youth Foundation of the National Science Foundation of China(62001503)the Excellent Youth Scholar of the National Defense Science and Technology Foundation of China(2017-JCJQ-ZQ-003)the Special Fund for Taishan Scholar Project(ts201712072).
文摘When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to identify the unknown targets densely distributed in the feature space,especially when there is interval overlap between attribute measurements of different target classes.To address these problems,a novel method based on intuitionistic fuzzy comprehensive evaluation model(IFCEM)is proposed.For numerical attributes,targets in the database are divided into individual classes and overlapping classes,and for linguistic attributes,continuous interval-valued linguistic term set(CIVLTS)is used to describe target characteristic.A cloud modelbased method and an area-based method are proposed to obtain intuitionistic fuzzy decision information of query target on numerical attributes and linguistic attributes respectively.An improved inverse weighted kernel fuzzy c-means(IWK-FCM)algorithm is proposed for solution of attribute weight vector.The possibility matrix is applied to determine the identity and category of query target.Finally,a case study composed of parameter sensitivity analysis,recognition accuracy analysis.and comparison with other methods,is taken to verify the superiority of the proposed method.
文摘Time intervals are often associated with tuples to represent their valid time in temporal relations, where overlap join is crucial for various kinds of queries. Many existing overlap join algorithms use indices based on tree structures such as quad-tree, B+-tree and interval tree. These algorithms usually have high CPU cost since deep path traversals are unavoidable, which makes them not so competitive as data-partition or plane-sweep based algorithms. This paper proposes an efficient overlap join algorithm based on a new two-layer flat index named as Overlap Interval Inverted Index (i.e., O2i Index). It uses an array to record the end points of intervals and approximates the nesting structures of intervals via two functions in the first layer, and the second layer uses inverted lists to trace all intervals satisfying the approximated nesting structures. With the help of the new index, the join algorithm only visits the must-be-scanned lists and skips all others. Analyses and experiments on both real and synthetic datasets show that the proposed algorithm is as competitive as the state-of-the-art algorithms.