In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides...In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides a concise representation for the two kinds of uncertainties simultaneously. In this paper, a generalized Markov chain model (GMCM), based on the generalized interval probability theory, is proposed to improve the reliability of prediction. In the GMCM, aleatory uncertainty is represented as probability; interval is used to capture epistemic uncertainty. A case study for predicting the average dynamic compliance in machining processes is provided to demonstrate the effectiveness of proposed GMCM. The results show that the proposed GMCM has a better prediction performance than that of MCM.展开更多
In consideration of the uncertainty of basic events failure rate and lack of probability statistical information in fault tree analysis( FTA) of excavator variable-frequency speed control system, the interval theory w...In consideration of the uncertainty of basic events failure rate and lack of probability statistical information in fault tree analysis( FTA) of excavator variable-frequency speed control system, the interval theory was employed and combined with conventional FTA method. The basic events failure probabilities were described by interval numbers,and the interval operators of logical gates in FTA were deduced based on interval theory. Finally,the reliability assessment of excavator variable-frequency speed control system was done by interval FTA method. The result shows that the interval FTA method is suitable for the complex system with insufficient failure data.展开更多
In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the impr...In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.展开更多
The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,t...The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.展开更多
Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primari...Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.展开更多
In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propaga...In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propagation,mainly focusing on drought propagation time and propagation probability.However,there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels.Therefore,we took the Heihe River Basin(HRB)of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020,and subsequently explore their sensitivities to seasons(irrigation and non-irrigation seasons)and drought levels.The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability.The results determined the average drought propagation time as 8 months in the whole basin,which was reduced by 2 months(i.e.,6 months)on average during the irrigation season and prolonged by 2 months(i.e.,10 months)during the non-irrigation season.Propagation probability was sensitive to both seasons and drought levels,and the sensitivities had noticeable spatial differences in the whole basin.The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream,midstream,and southern downstream regions of the HRB.Lesser agricultural droughts were more likely to be triggered during the irrigation season,while severer agricultural droughts were occurred mostly during the non-irrigation season.The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts.This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.展开更多
Healthcare waste(HCW)management plays a vital role in the development of modern society.In HCW management,failure mode and effects analysis(FMEA)is a popular method to implement risk management for improving the quali...Healthcare waste(HCW)management plays a vital role in the development of modern society.In HCW management,failure mode and effects analysis(FMEA)is a popular method to implement risk management for improving the quality of healthcare.However,the shortcomings of the traditional FMEA method have been widely discussed in literatures.This paper proposes an information fusion FMEA method based on 2-tuple linguistic information and interval probability.The 2-tuple linguistic set theory is adopted to change the heterogeneous information into interval numbers.Meanwhile,the interval probability comparison method is applied to analyze failure modes.Finally,a case study is presented to verify the reliability and effectiveness of the proposed method by comparing different FMEA methods.展开更多
基金supported by the National Key Basic Research Program of China (973 Program) (Grant No. 2011CB706803)the National Natural Science Foundation of China (Grant Nos. 51175208, 51075161)
文摘In the traditional Markov chain model (MCM), aleatory uncertainty because of inherent randomness and epistemic uncertainty due to the lack of knowledge are not differentiated. Generalized interval probability provides a concise representation for the two kinds of uncertainties simultaneously. In this paper, a generalized Markov chain model (GMCM), based on the generalized interval probability theory, is proposed to improve the reliability of prediction. In the GMCM, aleatory uncertainty is represented as probability; interval is used to capture epistemic uncertainty. A case study for predicting the average dynamic compliance in machining processes is provided to demonstrate the effectiveness of proposed GMCM. The results show that the proposed GMCM has a better prediction performance than that of MCM.
基金National High-Tech Research and Development Program(863 Program),China(No.2012AA062001)
文摘In consideration of the uncertainty of basic events failure rate and lack of probability statistical information in fault tree analysis( FTA) of excavator variable-frequency speed control system, the interval theory was employed and combined with conventional FTA method. The basic events failure probabilities were described by interval numbers,and the interval operators of logical gates in FTA were deduced based on interval theory. Finally,the reliability assessment of excavator variable-frequency speed control system was done by interval FTA method. The result shows that the interval FTA method is suitable for the complex system with insufficient failure data.
文摘In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.
基金the National Natural Science Foundation of China (51408444, 51708428)
文摘The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.
基金This work was supported by the Natural Science Foundation of Anhui Province(2022AH050703)the National Natural Science Foundation of China(11671375).
文摘Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations.
基金supported by the National Natural Science Foundation of China (41101038)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2021nkms03)
文摘In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propagation,mainly focusing on drought propagation time and propagation probability.However,there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels.Therefore,we took the Heihe River Basin(HRB)of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020,and subsequently explore their sensitivities to seasons(irrigation and non-irrigation seasons)and drought levels.The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability.The results determined the average drought propagation time as 8 months in the whole basin,which was reduced by 2 months(i.e.,6 months)on average during the irrigation season and prolonged by 2 months(i.e.,10 months)during the non-irrigation season.Propagation probability was sensitive to both seasons and drought levels,and the sensitivities had noticeable spatial differences in the whole basin.The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream,midstream,and southern downstream regions of the HRB.Lesser agricultural droughts were more likely to be triggered during the irrigation season,while severer agricultural droughts were occurred mostly during the non-irrigation season.The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts.This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.
基金supported by the National Natural Science Foundation of China(Nos.71931006,71702072)the Natural Science Foundation for Jiangsu Institutions(No.BK20170810)the China Postdoctoral Science Foundation(No.2019T120429,2017M611808)
文摘Healthcare waste(HCW)management plays a vital role in the development of modern society.In HCW management,failure mode and effects analysis(FMEA)is a popular method to implement risk management for improving the quality of healthcare.However,the shortcomings of the traditional FMEA method have been widely discussed in literatures.This paper proposes an information fusion FMEA method based on 2-tuple linguistic information and interval probability.The 2-tuple linguistic set theory is adopted to change the heterogeneous information into interval numbers.Meanwhile,the interval probability comparison method is applied to analyze failure modes.Finally,a case study is presented to verify the reliability and effectiveness of the proposed method by comparing different FMEA methods.