For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation...For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.展开更多
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-...Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.展开更多
Objective: This study aimed to explore the experiences of women in the process of formula feeding their infants. The World Health Organization has emphasized the importance of breastfeeding for infant health. After de...Objective: This study aimed to explore the experiences of women in the process of formula feeding their infants. The World Health Organization has emphasized the importance of breastfeeding for infant health. After decades of breastfeeding promotions,breastfeeding rates in Hong Kong have been rising consistently; however, the low continuation rate is alarming. This study explores women's experiences with formula feeding their infants, including factors affecting their decision to do so.Methods: A qualitative approach using an interpretative phenomenological analysis(IPA) was adopted as the study design. Data were collected from 2014 to 2015 through individual in-depth unstructured interviews with 16 women, conducted between 3 and 12 months after the birth of their infant. Data were analyzed using IPA.Results: Three main themes emerged as follows:(1) self-struggle, with the subthemes of feeling like a milk cow and feeling trapped;(2) family conflict, with the subtheme of sharing the spotlight; and(3) interpersonal tensions, with the subthemes of embarrassment,staring, and innocence. Many mothers suffered various stressors and frustrations during breastfeeding. These findings suggest a number of pertinent areas that need to be considered in preparing an infant feeding campaign.Conclusions: The findings of this study reinforce our knowledge of women's struggles with multiple sources of pressure, such as career demands, childcare demands, and family life after giving birth. All mothers should be given assistance in making informed decisions about the optimal approach to feeding their babies given their individual situation and be provided with support to pursue their chosen feeding method.展开更多
Background: Based on the experience of hospital nurses, the aim of this study is to explore the phenomenon of how work-engaged nurses stay healthy in relationally demanding jobs involving very sick and/or dying patien...Background: Based on the experience of hospital nurses, the aim of this study is to explore the phenomenon of how work-engaged nurses stay healthy in relationally demanding jobs involving very sick and/or dying patients. Method: In-depth interviews were conducted with ten work-engaged nurses employed at the main hospital in one region in Norway. The interviews were interpreted using the Interpretative Phenomenological Analysis method (IPA). Results: The results indicate the importance of using the personal resources: authenticity and a sense of humour for staying healthy. The nurses’ authenticity, in the sense of having a strong sense of ownership towards their personal life experiences, and a sense of having a meaningful life in line with their own values and interests, was an important element when they considered their own health to be good in spite of repetitive strain injuries and perceived stress. These personal resources seem to be positively related to their well-being and work engagement, which serves as an argument for including them among other personal resources, often conceptualized in terms of Psychological Capital (PsyCap). The results also showed that the nurses worked actively and intentionally with conditions that could contribute to safeguarding their own health. Conclusion: The results indicated the importance of stimulating the nurses’ area of knowledge about caring for themselves in order to enable them to maintain good physical and mental health. A focus on self-care should be part of the agenda as early as during nursing education.展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
Dear Editor,I am writing in response to Jamil's letter,"Interpretative Challenges of the Missing Perilymph'Sign in PLF Diagnosis."I concur with the author's emphasis on the necessity for cautious...Dear Editor,I am writing in response to Jamil's letter,"Interpretative Challenges of the Missing Perilymph'Sign in PLF Diagnosis."I concur with the author's emphasis on the necessity for cautious interpretation of low-signal areas as evidence of active perilymph leakage,requiring correlation with clinical findings,surgical confirmation,and longitudinal imaging changes.展开更多
In recent years,significant advances have been achieved in liver cancer management with the development of artificial intelligence(AI).AI-based pathological analysis can extract crucial information from whole slide im...In recent years,significant advances have been achieved in liver cancer management with the development of artificial intelligence(AI).AI-based pathological analysis can extract crucial information from whole slide images to assist clinicians in all aspects from diagnosis to prognosis and molecular profiling.However,AI techniques have a“black box”nature,which means that interpretability is of utmost importance because it is key to ensuring the reliability of the methods and building trust among clinicians for actual clinical implementation.In this paper,we provide an overview of current technical advancements in the AI-based pathological analysis of liver cancer,and delve into the strategies used in recent studies to unravel the“black box”of AI's decision-making process.展开更多
Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze we...Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.展开更多
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat...BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.展开更多
The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an ...The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys.展开更多
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat...As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.展开更多
Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the f...Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the focus of criticism,especially in the application of SARATR,which is closely associated with the national defense and security domain.To address these issues,a new interpretable recognition model Physics-Guided BagNet(PGBN)is proposed in this article.The model adopts an interpretable convolutional neural network framework and uses time–frequency analysis to extract physical scattering features in SAR images.Based on the physical scattering features,an unsupervised segmentation method is proposed to distinguish targets from the background in SAR images.On the basis of the segmentation result,a structure is designed,which constrains the model's spatial attention to focus more on the targets themselves rather than the background,thereby making the model's decision-making more in line with physical principles.In contrast to previous interpretable research methods,this model combines interpretable structure with physical interpretability,further reducing the model's risk of error recognition.Experiments on the MSTAR dataset verify that the PGBN model exhibits excellent interpretability and recognition performance,and comparative experiments with heatmaps indicate that the physical feature guidance module presented in this article can constrain the model to focus more on the target itself rather than the background.展开更多
This article aims to argue that interpreting liangzhi 良知 as innate, original, or cognitive knowledge is likely to fall into "interpretative obfuscation regarding knowledge." First, for Wang, what is inherent in ma...This article aims to argue that interpreting liangzhi 良知 as innate, original, or cognitive knowledge is likely to fall into "interpretative obfuscation regarding knowledge." First, for Wang, what is inherent in mankind is moral agency rather than innate or original knowledge. Therefore, the focus ofzhizhi 致知 and gewu 格物 is instead on moral practice and actualization of virtue rather than on either "the extension of knowledge" or "the investigation of things." Apart from that, drawing support from cognitive knowledge to explicate liangzhi also leads to three related but distinct misconceptions: liangzhi as perfect knowledge, the identity of knowledge and action, and liangzhi as recognition or acknowledgement. By clarifying the above misinterpretations, the meaning and implication of liangzhi will, in turn, also become clearer.展开更多
Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems i...Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems in interpreting education and practical teaching suggestions:(1)Corpus-based researches collect numerous audios to study typical mistakes made by interpreting learners,particularly pause and self-repair,and suggest interpreting teaching improve learners’ability to use language chunks and encourage students to interpret smoothly;(2)Questionnaire surveys help understand requirements for professional interpreters and how interpreting teaching meets market demands;(3)Teaching experiments last for one to two semesters,addressing issues like outdated teaching materials and modes,and show how teaching materials and modes integrate modern technology.But empirical researches need to build new corpora,professional interpreters’corpora and address problems that haven’t been adequately discussed.This paper is helpful for improving interpreting education in China and other countries and for making clear tasks to be fulfilled in empirical research on interpreting education.展开更多
The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its green...The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs.展开更多
Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engine...Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engineering to establish a finely tuned gradient boosting regressor(GBR)model,which adeptly captures the physical complexity from feature space to target variables.We demonstrated that environmental electron effects and atomic number significantly govern the success of the mapping process via global and local explanations.The finely tuned GBR model exhibits exceptional robustness in predicting CO adsorption energies(R_(ave)^(2)=0.937,RMSE=0.153 eV).Moreover,the model demonstrated remarkable transfer learning ability,showing excellent predictive power for OH,NO,and N_(2) adsorption.Importantly,the GBR model exhibits exceptional predictive capability across an extensive search space,thereby demonstrating profound adaptability and versatility.Our research framework significantly enhances the interpretability and transferability of machine learning in electrocatalysis,offering vital insights for further advancements.展开更多
Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder act...Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder acts as both a reactant and a catalyst.However,the reaction mechanism and the structure-activity relationship of this process have not been fully elucidated.In this work,a comprehensive study of the reaction mechanism in the presence of Si and Cu_(3)Si was carried out using density functional theory(DFT)combined with experiments,respectively.The results indicated that the ratedetermining step(RDS)in the presence of Si is the phase transition of Si atom,meanwhile,the RDS in the presence of Cu_(3)Si is the TCS-generation process.The activation barrier of the latter is smaller,highlighting that the interaction of Si with the bulk phase is the pivotal factor influencing the catalytic activity.The feasibility of transition metal doping to facilitate this step was further investigated.The Si disengage energy(E_(d))was used as a quantitative parameter to assess the catalytic activity of the catalysts,and the optimal descriptor was determined through interpretable machine learning.It was demonstrated that d-band center and electron transfer play a crucial role in regulating the level of Ed.This work reveals the mechanism and structure-activity relationship for the low-temperature hydrogenation reaction of STC,and provides a basis for the rational design of catalysts.展开更多
In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defe...In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defect prediction methods based on software metric elements highly rely on software metric data.However,redundant software metric data is not conducive to efficient defect prediction,posing severe challenges to current software defect prediction tasks.To address these issues,this paper focuses on the rational clustering of software metric data.Firstly,multiple software projects are evaluated to determine the preset number of clusters for software metrics,and various clustering methods are employed to cluster the metric elements.Subsequently,a co-occurrence matrix is designed to comprehensively quantify the number of times that metrics appear in the same category.Based on the comprehensive results,the software metric data are divided into two semantic views containing different metrics,thereby analyzing the semantic information behind the software metrics.On this basis,this paper also conducts an in-depth analysis of the impact of different semantic view of metrics on defect prediction results,as well as the performance of various classification models under these semantic views.Experiments show that the joint use of the two semantic views can significantly improve the performance of models in software defect prediction,providing a new understanding and approach at the semantic view level for defect prediction research based on software metrics.展开更多
基金the National Basic Research Program of China (973 Program) ( 2007CB407206)the National Key Technologies Research and Develop-ment Program in the Eleventh Five-Year Plan of China (2006BAC01A11)
文摘For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Natural Science Fund of Ningbo(2012A610001)
文摘Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases.
文摘Objective: This study aimed to explore the experiences of women in the process of formula feeding their infants. The World Health Organization has emphasized the importance of breastfeeding for infant health. After decades of breastfeeding promotions,breastfeeding rates in Hong Kong have been rising consistently; however, the low continuation rate is alarming. This study explores women's experiences with formula feeding their infants, including factors affecting their decision to do so.Methods: A qualitative approach using an interpretative phenomenological analysis(IPA) was adopted as the study design. Data were collected from 2014 to 2015 through individual in-depth unstructured interviews with 16 women, conducted between 3 and 12 months after the birth of their infant. Data were analyzed using IPA.Results: Three main themes emerged as follows:(1) self-struggle, with the subthemes of feeling like a milk cow and feeling trapped;(2) family conflict, with the subtheme of sharing the spotlight; and(3) interpersonal tensions, with the subthemes of embarrassment,staring, and innocence. Many mothers suffered various stressors and frustrations during breastfeeding. These findings suggest a number of pertinent areas that need to be considered in preparing an infant feeding campaign.Conclusions: The findings of this study reinforce our knowledge of women's struggles with multiple sources of pressure, such as career demands, childcare demands, and family life after giving birth. All mothers should be given assistance in making informed decisions about the optimal approach to feeding their babies given their individual situation and be provided with support to pursue their chosen feeding method.
文摘Background: Based on the experience of hospital nurses, the aim of this study is to explore the phenomenon of how work-engaged nurses stay healthy in relationally demanding jobs involving very sick and/or dying patients. Method: In-depth interviews were conducted with ten work-engaged nurses employed at the main hospital in one region in Norway. The interviews were interpreted using the Interpretative Phenomenological Analysis method (IPA). Results: The results indicate the importance of using the personal resources: authenticity and a sense of humour for staying healthy. The nurses’ authenticity, in the sense of having a strong sense of ownership towards their personal life experiences, and a sense of having a meaningful life in line with their own values and interests, was an important element when they considered their own health to be good in spite of repetitive strain injuries and perceived stress. These personal resources seem to be positively related to their well-being and work engagement, which serves as an argument for including them among other personal resources, often conceptualized in terms of Psychological Capital (PsyCap). The results also showed that the nurses worked actively and intentionally with conditions that could contribute to safeguarding their own health. Conclusion: The results indicated the importance of stimulating the nurses’ area of knowledge about caring for themselves in order to enable them to maintain good physical and mental health. A focus on self-care should be part of the agenda as early as during nursing education.
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
文摘Dear Editor,I am writing in response to Jamil's letter,"Interpretative Challenges of the Missing Perilymph'Sign in PLF Diagnosis."I concur with the author's emphasis on the necessity for cautious interpretation of low-signal areas as evidence of active perilymph leakage,requiring correlation with clinical findings,surgical confirmation,and longitudinal imaging changes.
基金supported by the National Natural Science Foundation of China(Nos 81961128025 and 82273187)the Research Projects from the Science and Technology Commission of Shanghai Municipality(Nos 21JC1401200 and 20JC1418900)the Natural Science Foundation of Fujian Province(No.2023J05292).
文摘In recent years,significant advances have been achieved in liver cancer management with the development of artificial intelligence(AI).AI-based pathological analysis can extract crucial information from whole slide images to assist clinicians in all aspects from diagnosis to prognosis and molecular profiling.However,AI techniques have a“black box”nature,which means that interpretability is of utmost importance because it is key to ensuring the reliability of the methods and building trust among clinicians for actual clinical implementation.In this paper,we provide an overview of current technical advancements in the AI-based pathological analysis of liver cancer,and delve into the strategies used in recent studies to unravel the“black box”of AI's decision-making process.
基金supported by the National Natural Science Foundation of China(No.51605054).
文摘Environmentalmonitoring systems based on remote sensing technology have a wider monitoringrange and longer timeliness, which makes them widely used in the detection andmanagement of pollution sources. However, haze weather conditions degrade image qualityand reduce the precision of environmental monitoring systems. To address this problem,this research proposes a remote sensing image dehazingmethod based on the atmosphericscattering model and a dark channel prior constrained network. The method consists ofa dehazing network, a dark channel information injection network (DCIIN), and a transmissionmap network. Within the dehazing network, the branch fusion module optimizesfeature weights to enhance the dehazing effect. By leveraging dark channel information,the DCIIN enables high-quality estimation of the atmospheric veil. To ensure the outputof the deep learning model aligns with physical laws, we reconstruct the haze image usingthe prediction results from the three networks. Subsequently, we apply the traditionalloss function and dark channel loss function between the reconstructed haze image and theoriginal haze image. This approach enhances interpretability and reliabilitywhile maintainingadherence to physical principles. Furthermore, the network is trained on a synthesizednon-homogeneous haze remote sensing dataset using dark channel information from cloudmaps. The experimental results show that the proposed network can achieve better imagedehazing on both synthetic and real remote sensing images with non-homogeneous hazedistribution. This research provides a new idea for solving the problem of decreased accuracyof environmental monitoring systems under haze weather conditions and has strongpracticability.
基金Supported by National Key Research and Development Program,No.2022YFC2407304Major Research Project for Middle-Aged and Young Scientists of Fujian Provincial Health Commission,No.2021ZQNZD013+2 种基金The National Natural Science Foundation of China,No.62275050Fujian Province Science and Technology Innovation Joint Fund Project,No.2019Y9108Major Science and Technology Projects of Fujian Province,No.2021YZ036017.
文摘BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability.
基金funded by the National Natural Science Foundation of China(No.52204407)the Natural Science Foundation of Jiangsu Province(No.BK20220595)+1 种基金the China Postdoctoral Science Foundation(No.2022M723689)the Industrial Collaborative Innovation Project of Shanghai(No.XTCX-KJ-2022-2-11)。
文摘The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys.
基金supported by the National Natural Science Foundation of China(22379021 and 22479021)。
文摘As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries.
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.
基金co-supported by the National Natural Science Foundation of China(No.62001507)the Youth Talent Lifting Project of the China Association for Science and Technology(No.2021-JCJQ-QT-018)+1 种基金the Program of the Youth Innovation Team of Shaanxi Universitiesthe Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-YB-491)。
文摘Deep Learning(DL)model has been widely used in the field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)and has achieved excellent performance.However,the black-box nature of DL models has been the focus of criticism,especially in the application of SARATR,which is closely associated with the national defense and security domain.To address these issues,a new interpretable recognition model Physics-Guided BagNet(PGBN)is proposed in this article.The model adopts an interpretable convolutional neural network framework and uses time–frequency analysis to extract physical scattering features in SAR images.Based on the physical scattering features,an unsupervised segmentation method is proposed to distinguish targets from the background in SAR images.On the basis of the segmentation result,a structure is designed,which constrains the model's spatial attention to focus more on the targets themselves rather than the background,thereby making the model's decision-making more in line with physical principles.In contrast to previous interpretable research methods,this model combines interpretable structure with physical interpretability,further reducing the model's risk of error recognition.Experiments on the MSTAR dataset verify that the PGBN model exhibits excellent interpretability and recognition performance,and comparative experiments with heatmaps indicate that the physical feature guidance module presented in this article can constrain the model to focus more on the target itself rather than the background.
文摘This article aims to argue that interpreting liangzhi 良知 as innate, original, or cognitive knowledge is likely to fall into "interpretative obfuscation regarding knowledge." First, for Wang, what is inherent in mankind is moral agency rather than innate or original knowledge. Therefore, the focus ofzhizhi 致知 and gewu 格物 is instead on moral practice and actualization of virtue rather than on either "the extension of knowledge" or "the investigation of things." Apart from that, drawing support from cognitive knowledge to explicate liangzhi also leads to three related but distinct misconceptions: liangzhi as perfect knowledge, the identity of knowledge and action, and liangzhi as recognition or acknowledgement. By clarifying the above misinterpretations, the meaning and implication of liangzhi will, in turn, also become clearer.
基金USST Construction Project of English-taught Courses for International Students in 2024Key Course Construction Project in Universities of Shanghai in 2024USST Teaching Achievement Award(postgraduate)Cultivation Project in 2024。
文摘Based on 1,003 articles about empirical research on interpreting teaching from 2002 to 2022 retrieved from China National Knowledge Internet,this paper extracts three main research methods,uncovering common problems in interpreting education and practical teaching suggestions:(1)Corpus-based researches collect numerous audios to study typical mistakes made by interpreting learners,particularly pause and self-repair,and suggest interpreting teaching improve learners’ability to use language chunks and encourage students to interpret smoothly;(2)Questionnaire surveys help understand requirements for professional interpreters and how interpreting teaching meets market demands;(3)Teaching experiments last for one to two semesters,addressing issues like outdated teaching materials and modes,and show how teaching materials and modes integrate modern technology.But empirical researches need to build new corpora,professional interpreters’corpora and address problems that haven’t been adequately discussed.This paper is helpful for improving interpreting education in China and other countries and for making clear tasks to be fulfilled in empirical research on interpreting education.
基金funded by Research Platforms and Projects for Higher Education Institutions of Department of Education of Guangdong Province in 2024(2024KTSCX256)2023 Guangdong Province Higher Vocational Education Teaching Quality and Teaching Reform Project(2023JG080).
文摘The potential toxicity of ionic liquids(ILs)affects their applications;how to control the toxicity is one of the key issues in their applications.To understand its toxicity structure relationship and promote its greener application,six different machine learning algorithms,including Bagging,Adaptive Boosting(AdaBoost),Gradient Boosting(GBoost),Stacking,Voting and Categorical Boosting(CatBoost),are established to model the toxicity of ILs on four distinct datasets including Leukemia rat cell line IPC-81(IPC-81),Acetylcholinesterase(AChE),Escherichia coli(E.coli)and Vibrio fischeri.Molecular descriptors obtained from the simplified molecular input line entry system(SMILES)are used to characterize ILs.All models are assessed by the mean square error(MSE),root mean square error(RMSE),mean absolute error(MAE)and correlation coefficient(R^(2)).Additionally,an interpretation model based on SHapley Additive exPlanations(SHAP)is built to determine the positive and negative effects of each molecular feature on toxicity.With additional parameters and complexity,the Catboost model outperforms the other models,making it a more reliable model for ILs'toxicity prediction.The results of the model's interpretation indicate that the most significant positive features,SMR_VSA5,PEOE_VSA8,Kappa2,PEOE_VSA6,SMR_VSA5,PEOE_VSA6 and EState_VSA1,can increase the toxicity of ILs as their levels rise,while the most significant negative features,VSA_EState7,EState_VSA8,PEOE_VSA9 and FpDensityMorgan1,can decrease the toxicity as their levels rise.Also,an IL's toxicity will grow as its average molecular weight and number of pyridine rings increase,whereas its toxicity will decrease as its hydrogen bond acceptors increase.This finding offers a theoretical foundation for rapid screening and synthesis of environmentally-benign ILs.
基金supported by the Research Grants Council of Hong Kong(CityU 11305919 and 11308620)and NSFC/RGC Joint Research Scheme N_CityU104/19Hong Kong Research Grant Council Collaborative Research Fund:C1002-21G and C1017-22Gsupported by the Hong Kong Research Grant Council Collaborative Research Fund:C6021-19E.
文摘Developing machine learning frameworks with predictive power,interpretability,and transferability is crucial,yet it faces challenges in the field of electrocatalysis.To achieve this,we employed rigorous feature engineering to establish a finely tuned gradient boosting regressor(GBR)model,which adeptly captures the physical complexity from feature space to target variables.We demonstrated that environmental electron effects and atomic number significantly govern the success of the mapping process via global and local explanations.The finely tuned GBR model exhibits exceptional robustness in predicting CO adsorption energies(R_(ave)^(2)=0.937,RMSE=0.153 eV).Moreover,the model demonstrated remarkable transfer learning ability,showing excellent predictive power for OH,NO,and N_(2) adsorption.Importantly,the GBR model exhibits exceptional predictive capability across an extensive search space,thereby demonstrating profound adaptability and versatility.Our research framework significantly enhances the interpretability and transferability of machine learning in electrocatalysis,offering vital insights for further advancements.
基金supported by Hubei Three Gorges Laboratory Open Innovation Fund Project(SC231002)CFD Simulation to Explore the Mass and Heat Transfer Laws of Thermal Decomposition of Mixed Salt Organic Compounds Project(2021YFC 3201404).
文摘Low-temperature hydrogenation of silicon tetrachloride(STC)is an essential step in polysilicon production.The addition of CuCl to silicon powder is currently a commonly used catalytic method and the silicon powder acts as both a reactant and a catalyst.However,the reaction mechanism and the structure-activity relationship of this process have not been fully elucidated.In this work,a comprehensive study of the reaction mechanism in the presence of Si and Cu_(3)Si was carried out using density functional theory(DFT)combined with experiments,respectively.The results indicated that the ratedetermining step(RDS)in the presence of Si is the phase transition of Si atom,meanwhile,the RDS in the presence of Cu_(3)Si is the TCS-generation process.The activation barrier of the latter is smaller,highlighting that the interaction of Si with the bulk phase is the pivotal factor influencing the catalytic activity.The feasibility of transition metal doping to facilitate this step was further investigated.The Si disengage energy(E_(d))was used as a quantitative parameter to assess the catalytic activity of the catalysts,and the optimal descriptor was determined through interpretable machine learning.It was demonstrated that d-band center and electron transfer play a crucial role in regulating the level of Ed.This work reveals the mechanism and structure-activity relationship for the low-temperature hydrogenation reaction of STC,and provides a basis for the rational design of catalysts.
基金supported by the CCF-NSFOCUS‘Kunpeng’Research Fund(CCF-NSFOCUS2024012).
文摘In recent years,with the rapid development of software systems,the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.Defect prediction methods based on software metric elements highly rely on software metric data.However,redundant software metric data is not conducive to efficient defect prediction,posing severe challenges to current software defect prediction tasks.To address these issues,this paper focuses on the rational clustering of software metric data.Firstly,multiple software projects are evaluated to determine the preset number of clusters for software metrics,and various clustering methods are employed to cluster the metric elements.Subsequently,a co-occurrence matrix is designed to comprehensively quantify the number of times that metrics appear in the same category.Based on the comprehensive results,the software metric data are divided into two semantic views containing different metrics,thereby analyzing the semantic information behind the software metrics.On this basis,this paper also conducts an in-depth analysis of the impact of different semantic view of metrics on defect prediction results,as well as the performance of various classification models under these semantic views.Experiments show that the joint use of the two semantic views can significantly improve the performance of models in software defect prediction,providing a new understanding and approach at the semantic view level for defect prediction research based on software metrics.