期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intermonthly Difference of Multi-attribute Characteristics of Rainstorm in China Based on Spatial-temporal Differentiation 被引量:2
1
作者 KONG Feng 《Journal of Landscape Research》 2019年第6期61-70,76,共11页
Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were di... Based on the daily precipitation data of 545 meteorological stations in China from 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall and rainy days in different months of China were diagnosed from three aspects: climatic characteristics, variation trend and interannual variation. The results showed that:(1) Rainstorm rainfall and rainy days in different months of China from 1961 to 2016 had similar spatial characteristics in corresponding months. From January to July, the high-value areas of rainstorm rainfall and rainy days gradually expanded from southeast coast to northwest inland, but mainly distributed in the east area of Hu Huanyong Line. From August to December, it shrank from northwest to southeast coastal areas. Rainstorm rainfall and rainy days were less distributed in different months in the west area of Hu Huanyong Line;(2) From 1961 to 2016, the spatial-temporal variation characteristics of rainstorm rainfall in different months in China were basically consistent with that of rainy days. May to August was the most significant month for the variation trend of rainstorm rainfall and rainy days in China. It mainly distributed in the southeast monsoon area, and was mainly increasing trend. The trend of rainstorm rainfall and rainy days in northwest China changed slightly in different months;(3) The interannual variability of rainstorm rainfall in different months in China from 1961 to 2016 was similar to that of rainy days. The fluctuation characteristics from April to October were larger in the northern region. The southern region fluctuated greatly from November to December in January to March. With the development of the month, the high-value areas with large daily fluctuations of rainstorm rainfall and rainy days gradually expanded from southeast to northwest, northeast and southwest, and the fluctuations in southeast tended to decrease, then shrank from northwest, northeast and southwest to southeast, with the increasing fluctuations in southeast. The study has certain reference significance for flood control and disaster reduction and water resources planning and utilization. 展开更多
关键词 RAINSTORM intermonthly DIFFERENCE Spatial pattern Variation TREND FLUCTUATION CHARACTERISTICS Climate change China
在线阅读 下载PDF
STATISTIC CHARACTERISTICS OF MCSS OVER ASIA AND WESTERN PACIFIC REGION 被引量:1
2
作者 束宇 潘益农 王微 《Journal of Tropical Meteorology》 SCIE 2012年第4期457-472,共16页
Mesoscale convective systems (MCSs) are severe disaster-producing weather systems. Previous attempts of MCS census are made by examining infrared satellite imageries artificially, with subjectivity involved in the pro... Mesoscale convective systems (MCSs) are severe disaster-producing weather systems. Previous attempts of MCS census are made by examining infrared satellite imageries artificially, with subjectivity involved in the process unavoidably. This method is also inefficient and time-consuming. The disadvantages make it impossible to do MCS census over Asia and western Pacific region (AWPR) with an extended span of time, which is not favorable for gaining a deeper insight into these systems. In this paper, a fire-new automatic MCS identification (AMI) method is used to capture four categories of MCSs with different sizes and shapes from numerical satellite infrared data. 47,468 MCSs are identified over Asia and western Pacific region during the warm season (May to October) from 1995 to 2008. Based on this database, MCS characteristics such as shape, size, duration, velocity, geographical distribution, intermonthly variation, and lifecycle are studied. Results indicate that the number of linear MCSs is 2.5 times that of circular MCSs. The former is of a larger size while the latter is of a longer duration. The 500 hPa steering flow plays an important role in the MCS movement. MCSs tend to move faster after they reach the maximum extent. Four categories of MCS have similar characteristics of geographical distribution and intermonthly variation. Basically, MCSs are zonally distributed, with three zones weakening from south to north. The intermonthly variation of MCSs is related to the seasonal adjustment of the large-scale circulation. As to the MCSs over China, they have different lifecycle characteristics over different areas. MCSs over plateaus and hill areas, with only one peak in their lifecycle curves, tend to form in the afternoon, mature at nightfall, and dissipate at night. On the other hand, MCSs over plains, which have several peaks in their lifecycle curves, may form either in the afternoon or at night, whereas MCSs over the oceans tend to form at midnight. Affected by the sea-land breeze circulation, MCSs over coastal areas of Guangdong and Guangxi always come into being at about 1500 or 1600 (local time), while MCSs over the Sichuan Basin, affected by the mountain-valley breeze circulation, generally initiate nocturnally. 展开更多
关键词 mesoscale convective systems automatic MCS identification (AMI) method VELOCITY geographicaldistribution intermonthly variation LIFECYCLE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部