In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then...In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then the control input is divided into an expected input and an error compensator.Second,a novel adaptive neural network-based control scheme is proposed to cancel the unknown input hysteresis.Subsequently,by modifying the adaptive laws and local control laws,a fault-tolerant control strategy is applied to address uncertain intermittent actuator faults in a flexible manipulator system.Through the direct Lyapunov theory,the proposed scheme allows the state errors to asymptotically converge to a specified interval.Finally,the effectiveness of the proposed scheme is verified through numerical simulations and experiments.展开更多
Almost all work on model-based diagnosis (MBD) potentially presumes faults are per- sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag- nosis systems to misjudge IFs...Almost all work on model-based diagnosis (MBD) potentially presumes faults are per- sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag- nosis systems to misjudge IFs as permanent faults (PFs), which are the major cause of the problems of false alarms, cannot duplication and no fault found in aircraft avionics. To address this problem, a new fault model which includes PFs and IFs is presented based on discrete event systems (DESs). Thereafter, an approach is given to discriminate between PFs and IFs by diagnosing the current fault. In this paper, the regulations of (PFs and IFs) fault evolution through fault and reset events along the traces of system are studied, and then label propagation function is modified to account for PFs and the dynamic behavior of IFs and diagnosability of PFs and IFs are defined. Finally, illustrative examples are presented to demonstrate the proposed approach, and the analysis results show the fault types can be discriminated within bounded delay if the system is diagnosable.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Controller area networks(CANs),as one of the widely used fieldbuses in the industry,have been extended to the automation field with strict standards for safety and reliability.In practice,factors such as fatigue and i...Controller area networks(CANs),as one of the widely used fieldbuses in the industry,have been extended to the automation field with strict standards for safety and reliability.In practice,factors such as fatigue and insulation wear of the cables can cause intermittent connection(IC)faults to occur frequently in the CAN,which will affect the dynamic behavior and the safety of the system.Hence,quantitatively evaluating the performance of the CAN under the influence of IC faults is crucial to real-time health monitoring of the system.In this paper,a novel methodology is proposed for real-time quantitative evaluation of CAN availability when considering IC faults,with the system availability parameter being calculated based on the network state transition model.First,the causal relationship between IC fault and network error response is constructed,based on which the IC fault arrival rate is estimated.Second,the states of the network considering IC faults are analyzed,and the deterministic and stochastic Petri net(DSPN)model is applied to describe the transition relationship of the states.Then,the parameters of the DSPN model are determined and the availability of the system is calculated based on the probability distribution and physical meaning of markings in the DSPN model.A testbed is constructed and case studies are conducted to verify the proposed methodology under various experimental setups.Experimental results show that the estimation results obtained using the proposed method agree well with the actual values.展开更多
In the field of railway traction drive systems,voltage sensor intermittent faults can significantly impact the reliability and safety of the entire system.This paper proposes an online diagnosis method for detecting s...In the field of railway traction drive systems,voltage sensor intermittent faults can significantly impact the reliability and safety of the entire system.This paper proposes an online diagnosis method for detecting such faults using an Artificial Intelligence(AI)predictor based on a Nonlinear Autoregressive with eXogenous inputs(NARX)data structure.The model is trained efficiently using the Extreme Learning Machine(ELM)algorithm.The NARX model captures the dynamic characteristics of the voltage sensor data,enabling the AI predictor to learn complex nonlinear relationships.The ELM training method ensures rapid convergence and high accuracy.Through extensive experimental validation,the proposed method demonstrates high sensitivity to voltage sensor intermittent faults and robust performance under varying operating conditions.This approach offers a promising solution for enhancing the diagnostic capabilities of railway traction systems,ensuring timely fault detection and improving overall system reliability.展开更多
Associating environmental stresses (ESs) with built-in test (BIT) output is an important means to help diagnose intermittent faults (IFs). Aiming at low efficiency in association of traditional time stress measu...Associating environmental stresses (ESs) with built-in test (BIT) output is an important means to help diagnose intermittent faults (IFs). Aiming at low efficiency in association of traditional time stress measurement device (TSMD), an association model is built. Thereafter, a novel approach is given to evaluate the integrated environmental stress (IES) level. Firstly, the selection principle and approach of main environmental stresses (MESs) and key characteristic parameters (KCPs) are presented based on fault mode, mechanism, and ESs analysis (FMMEA). Secondly, reference stress events (RSEs) are constructed by dividing IES into three stress levels according to its impact on faults; and then the association model between integrated environmental stress event (IESE) and BIT output is built. Thirdly, an interval grey association approach to evaluate IES level is proposed due to the interval number of IES value. Consequently, the association output can be obtained as well. Finally, a case study is presented to demonstrate the proposed approach. Results show the proposed model and approach are effective and feasible. This approach can be used to guide ESs measure, record, and association. It is well suited for on-line assistant diagnosis of faults, especially IFs.展开更多
Diagnosing intermittent fault is an important approach to reduce built-in test(BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit ...Diagnosing intermittent fault is an important approach to reduce built-in test(BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit of support vector machines ( SVM) which can be trained with a small-sample, an SVM-based diagnostic model of 3 states that include OK state, intermittent state and faulty state is presented. With the features based on the reflection coefficients of an alarm rate ( AR ) model extracted from small vibration samples, these models are trained to diagnose intermittent faults. The experimental results show that this method can diagnose multiple intermittent faults accurately with small training samples and BIT false alarms are reduced.展开更多
An interconnection network's diagnosability is an important metric for measuring its self-diagnostic capability. Permanent fault and intermittent fault are two different fault models that exist in an interconnection ...An interconnection network's diagnosability is an important metric for measuring its self-diagnostic capability. Permanent fault and intermittent fault are two different fault models that exist in an interconnection network. In this paper, we focus on the problem pertaining to the diagnosability of interconnection networks in an intermittent fault situation. First, we study a class of interconnection networks called crisp three-cycle networks, in which the Chin-number (the number of common vertices each pair of vertices share) is no more than one. Necessary and sufficient conditions are derived for the diagnosability of crisp three-cycle networks under the PMC (Preparata, Metze, and Chien) model. A simple check can show that many well-known intereonnection networks are crisp three-cycle networks. Second, we prove that an intereonnection network S is a ti-fault diagnosable system without repair if and only if its minimum in-degree is greater than ti under the BGM (Barsi, Grandoni, and Masetrini) model. Finally, we extend the necessary and sufficient conditions to determine whether an interconnection network S is ti-fault diagnosable without repair under the MM (Maeng and Malek) model from the permanent fault situation to the intermittent fault situation.展开更多
In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine lea...In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine learning for detecting IAFs in three steps.First,the feature of zero-sequence current is automatically extracted and selected by a newlydesigned FINET(“For IAFs,Neuron Elaboration Net”),instead of traditional feature selection based on time-frequency decomposition.Moreover,data of the zero-sequence current divided by different time windows are successively input into the trained FINET.A proposed PSF(principal-subordinate factor)analyses the results obtained from FINET to improve anti-interference in the mentioned IAF detection algorithm.Experiments using PSCAD/EMTDC software simulation data show the proposed method is feasible and highly adaptable.In addition,the detection result of on-site recorded data demonstrates the effectiveness of the proposed method in practical resonant grounding systems.展开更多
基金supported in part by the National Key Research and Development Program of China(2023YFB4706400)the National Natural Science Foundation of China(62273112,62073030,62203161)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2023B1515120018,2023B1515120019)the Open Project of Xiangjiang Laboratory(23XJ03012)the Natural Science Foundation of Hunan Province(2024JJ5087)the Natural Science Foundation of Jiangxi Province(20232BAB212024)the National Research Foundation of Korea funded by the Ministry of Science and ICT,South Korea(IRIS-2023-00207954)the Science and Technology Planning Project of Guangzhou,China(2023A03J0120)the Guangzhou University Research Project(RC2023037)
文摘In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then the control input is divided into an expected input and an error compensator.Second,a novel adaptive neural network-based control scheme is proposed to cancel the unknown input hysteresis.Subsequently,by modifying the adaptive laws and local control laws,a fault-tolerant control strategy is applied to address uncertain intermittent actuator faults in a flexible manipulator system.Through the direct Lyapunov theory,the proposed scheme allows the state errors to asymptotically converge to a specified interval.Finally,the effectiveness of the proposed scheme is verified through numerical simulations and experiments.
基金co-supported by National Natural Science Foundation of China (No. 51175502)National Defence Pre-research Foundation of China (No. 9140A17060411KG01)
文摘Almost all work on model-based diagnosis (MBD) potentially presumes faults are per- sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag- nosis systems to misjudge IFs as permanent faults (PFs), which are the major cause of the problems of false alarms, cannot duplication and no fault found in aircraft avionics. To address this problem, a new fault model which includes PFs and IFs is presented based on discrete event systems (DESs). Thereafter, an approach is given to discriminate between PFs and IFs by diagnosing the current fault. In this paper, the regulations of (PFs and IFs) fault evolution through fault and reset events along the traces of system are studied, and then label propagation function is modified to account for PFs and the dynamic behavior of IFs and diagnosability of PFs and IFs are defined. Finally, illustrative examples are presented to demonstrate the proposed approach, and the analysis results show the fault types can be discriminated within bounded delay if the system is diagnosable.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金supported by the National Natural Science Foundation of China(No.52072341)。
文摘Controller area networks(CANs),as one of the widely used fieldbuses in the industry,have been extended to the automation field with strict standards for safety and reliability.In practice,factors such as fatigue and insulation wear of the cables can cause intermittent connection(IC)faults to occur frequently in the CAN,which will affect the dynamic behavior and the safety of the system.Hence,quantitatively evaluating the performance of the CAN under the influence of IC faults is crucial to real-time health monitoring of the system.In this paper,a novel methodology is proposed for real-time quantitative evaluation of CAN availability when considering IC faults,with the system availability parameter being calculated based on the network state transition model.First,the causal relationship between IC fault and network error response is constructed,based on which the IC fault arrival rate is estimated.Second,the states of the network considering IC faults are analyzed,and the deterministic and stochastic Petri net(DSPN)model is applied to describe the transition relationship of the states.Then,the parameters of the DSPN model are determined and the availability of the system is calculated based on the probability distribution and physical meaning of markings in the DSPN model.A testbed is constructed and case studies are conducted to verify the proposed methodology under various experimental setups.Experimental results show that the estimation results obtained using the proposed method agree well with the actual values.
文摘In the field of railway traction drive systems,voltage sensor intermittent faults can significantly impact the reliability and safety of the entire system.This paper proposes an online diagnosis method for detecting such faults using an Artificial Intelligence(AI)predictor based on a Nonlinear Autoregressive with eXogenous inputs(NARX)data structure.The model is trained efficiently using the Extreme Learning Machine(ELM)algorithm.The NARX model captures the dynamic characteristics of the voltage sensor data,enabling the AI predictor to learn complex nonlinear relationships.The ELM training method ensures rapid convergence and high accuracy.Through extensive experimental validation,the proposed method demonstrates high sensitivity to voltage sensor intermittent faults and robust performance under varying operating conditions.This approach offers a promising solution for enhancing the diagnostic capabilities of railway traction systems,ensuring timely fault detection and improving overall system reliability.
基金co-supported by National Natural Science Foundation of China (No. 51175502)National Defence Pre-research Foundation (No. 9140A17060411KG01)
文摘Associating environmental stresses (ESs) with built-in test (BIT) output is an important means to help diagnose intermittent faults (IFs). Aiming at low efficiency in association of traditional time stress measurement device (TSMD), an association model is built. Thereafter, a novel approach is given to evaluate the integrated environmental stress (IES) level. Firstly, the selection principle and approach of main environmental stresses (MESs) and key characteristic parameters (KCPs) are presented based on fault mode, mechanism, and ESs analysis (FMMEA). Secondly, reference stress events (RSEs) are constructed by dividing IES into three stress levels according to its impact on faults; and then the association model between integrated environmental stress event (IESE) and BIT output is built. Thirdly, an interval grey association approach to evaluate IES level is proposed due to the interval number of IES value. Consequently, the association output can be obtained as well. Finally, a case study is presented to demonstrate the proposed approach. Results show the proposed model and approach are effective and feasible. This approach can be used to guide ESs measure, record, and association. It is well suited for on-line assistant diagnosis of faults, especially IFs.
文摘Diagnosing intermittent fault is an important approach to reduce built-in test(BIT) false alarms. Aiming at solving the shortcoming of the present diagnostic method of intermittent fault, and according to the merit of support vector machines ( SVM) which can be trained with a small-sample, an SVM-based diagnostic model of 3 states that include OK state, intermittent state and faulty state is presented. With the features based on the reflection coefficients of an alarm rate ( AR ) model extracted from small vibration samples, these models are trained to diagnose intermittent faults. The experimental results show that this method can diagnose multiple intermittent faults accurately with small training samples and BIT false alarms are reduced.
文摘An interconnection network's diagnosability is an important metric for measuring its self-diagnostic capability. Permanent fault and intermittent fault are two different fault models that exist in an interconnection network. In this paper, we focus on the problem pertaining to the diagnosability of interconnection networks in an intermittent fault situation. First, we study a class of interconnection networks called crisp three-cycle networks, in which the Chin-number (the number of common vertices each pair of vertices share) is no more than one. Necessary and sufficient conditions are derived for the diagnosability of crisp three-cycle networks under the PMC (Preparata, Metze, and Chien) model. A simple check can show that many well-known intereonnection networks are crisp three-cycle networks. Second, we prove that an intereonnection network S is a ti-fault diagnosable system without repair if and only if its minimum in-degree is greater than ti under the BGM (Barsi, Grandoni, and Masetrini) model. Finally, we extend the necessary and sufficient conditions to determine whether an interconnection network S is ti-fault diagnosable without repair under the MM (Maeng and Malek) model from the permanent fault situation to the intermittent fault situation.
基金sponsored by the National Natural Science Foundation of China (No.51677030).
文摘In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine learning for detecting IAFs in three steps.First,the feature of zero-sequence current is automatically extracted and selected by a newlydesigned FINET(“For IAFs,Neuron Elaboration Net”),instead of traditional feature selection based on time-frequency decomposition.Moreover,data of the zero-sequence current divided by different time windows are successively input into the trained FINET.A proposed PSF(principal-subordinate factor)analyses the results obtained from FINET to improve anti-interference in the mentioned IAF detection algorithm.Experiments using PSCAD/EMTDC software simulation data show the proposed method is feasible and highly adaptable.In addition,the detection result of on-site recorded data demonstrates the effectiveness of the proposed method in practical resonant grounding systems.