Inspired by brick-and-mortar architectures and suture interfaces,we propose a design of bioinspired nacre-like materials with interlocking sutures to improve the toughness of brittle materials.Laser-engraved glass int...Inspired by brick-and-mortar architectures and suture interfaces,we propose a design of bioinspired nacre-like materials with interlocking sutures to improve the toughness of brittle materials.Laser-engraved glass interlockers are laminated with soft interlayers in a staggered arrangement,and the fundamental mechanical properties of the structure are investigated through experiments and numerical modeling.It is found that the tensile performance,such as the strength and toughness,is strongly affected by the interlocking angle and suture line spacing.The geometric interlocking originated from suture interfaces as well as tablet sliding arising from the staggered arrangement of interlockers cooperatively contribute to enhancing the strength and toughness of this bioinspired design.Additionally,the finite element modeling shows the interfacial failure and plastic deformation,revealing the interplay of the geometric interlocking mechanism and the sliding mechanism.This novel bioinspired design paves a new path for fabrication of structural materials combining high stiffness,high strength,and enhanced toughness.展开更多
Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks ...Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability,necessitating the use of an insulating protective layer,which greatly limits their utility.Herein,we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.In this method,the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix,resulting in mechanical interlocking through percolation.This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates,significantly enhancing its universality in diverse applications.Thereby,we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor.Furthermore,enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment,broadening its application into various electrochemical devices.展开更多
Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-network...Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structureproperty relationship of RILNs.展开更多
A bottleneck in biomimetic synthesis consists in the full copy of,for example,the hierarchical structure of proteins directed by weak interactions.By contrast with covalent bonds bearing definite orientation and high ...A bottleneck in biomimetic synthesis consists in the full copy of,for example,the hierarchical structure of proteins directed by weak interactions.By contrast with covalent bonds bearing definite orientation and high stability,weak intermolecular forces within a continuous dynamic equilibrium can be hardly tamed for molecular design.In this endeavor,a ligand-dominated strategy that embodies tunable electrostatic repulsion andπ···πstacking was first employed to shape polyoxovanadate-based metal-organic polyhedra(VMOPs).Structural evolution involving transformation,interlock,and discovery of an unprecedented prototype of the Star of David was hence achievable.Not only as a handy tool for the primary structural control over VMOPs,these weak forces allow for an advanced management on the spatial distribution of such manmade macromolecules as well as the associated physicochemical behaviors,representing an ideal model for simulating and interpreting the conformation-function relationship of proteins.展开更多
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele...The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.展开更多
BACKGROUND Intertrochanteric(IT)fracture is one of the most common fractures seen in an orthopaedic practice.Proximal femoral nailing(PFN)is a common modality of fixing IT femur fracture.We retrospectively studied whe...BACKGROUND Intertrochanteric(IT)fracture is one of the most common fractures seen in an orthopaedic practice.Proximal femoral nailing(PFN)is a common modality of fixing IT femur fracture.We retrospectively studied whether a PFN with two proximal lag screws can be done without distal interlocking screws in the 31-A1 and 31-A2 fracture patterns according to the Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association(AO/OTA)guidelines for IT femur fractures.AIM To compare the outcomes of IT fractures(AO/OTA 31-A1 and 31-A2)treated by PFN with and without distal interlocking screws.METHODS We carried out a retrospective study of 140 patients in a tertiary care centre who had AO/OTA type 31-A1 and 31-A2 IT fractures.We divided the patients into two groups,in which one of the groups received distal interlocking screws(group 1)and the other group did not(group 2).The subjects were followed up for a mean period of 14 mo and assessed for radiological union time,fracture site collapse,mechanical stability of implant,and complications associated with the PFN with distal interlocking and without distal interlocking.Then,the results were compared.RESULTS PFN without distal interlocking screws has several advantages and gives better results over PFN with distal interlocking screws in the AO/OTA 31-A2 fracture pattern.However,similar results were observed in both groups with the fracture pattern AO/OTA 31-A1.In patients with fracture pattern AO/OTA 31-A2 treated by PFN without distal interlocking screws,there were minimal proximal lockrelated complications and no risk of distal interlock-related complications.The operative time,IITV radiation time and time to radiological union were reduced.These patients also had better rotational alignment of the proximal femur,and the anatomy of the proximal femur was well maintained.It was also noted that in the cases where distal interlocking was performed,there was a gradual decrease in neck shaft angle,which led to varus collapse and failure of bone-implant construct in 21.40%.CONCLUSION In fracture pattern AO/OTA 31-A2,PFN without distal interlocking had better results and less complications than PFN with distal interlocking.展开更多
This paper discusses land-use changes in the interlock area of farming and pasturing (IAFP) in northern China. It presents detailed analyses of land-use features in the IAFP, which are controlled by the macro geomorph...This paper discusses land-use changes in the interlock area of farming and pasturing (IAFP) in northern China. It presents detailed analyses of land-use features in the IAFP, which are controlled by the macro geomorphic units and geophysical conditions-constraints or advantages. Additionally, it selects some indicators, according to the availability in acquiring and processing their quantitative data, to analyze the canonical correlations between the typical conversion of grassland and geophysical conditions. The preliminary study indicates that the physical conditions are of great advantages to the development of grassland. There exists significant correlation between land use change and some geophysical conditions.展开更多
The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under t...The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel.展开更多
Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the p...Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the personnel safety interlock system mainly considers measures to protect personnel from radiation hazards during beam preparation and the beam release process.Unlike other safety interlock systems,the personnel safety interlock system designed in this study focuses on the safety and stability of the system itself.The hardware and software of important interlock control loops are designed and developed according to the requirements of Safety Integrity Level 3 specified by IEC61508.A set of redundant ring networks was developed to ensure that damage to a certain network line does not affect the normal operation of the system.A set of friendly operation interfaces and data storage systems were developed to ensure that the operator can monitor the data in real time and trace the data.The personnel safety interlock system mainly includes a beam enabling function,clearance function,and emergency stop function.The system was put into actual use and successfully ensured personnel safety.展开更多
A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulatio...A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.展开更多
Two-dimensional(2D)materials have attracted considerable interest thanks to their unique electronic/physical-chemical characteristics and their potential for use in a large variety of sensing applications.However,few-...Two-dimensional(2D)materials have attracted considerable interest thanks to their unique electronic/physical-chemical characteristics and their potential for use in a large variety of sensing applications.However,few-layered nanosheets tend to agglomerate owing to van der Waals forces,which obstruct internal nanoscale transport channels,resulting in low electrochemical activity and restricting their use for sensing purposes.Here,a hybrid MXene/rGO aerogel with a three-dimensional(3D)interlocked network was fabricated via a freeze-drying method.The porous MXene/rGO aerogel has a lightweight and hierarchical porous architecture,which can be compressed and expanded several times without breaking.Additionally,a flexible pressure sensor that uses the aerogel as the sensitive layer has a wide response range of approximately 0-40 kPa and a considerable response within this range,averaging approximately 61.49 kPa^(-1).The excellent sensing performance endows it with a broad range of applications,including human-computer interfaces and human health monitoring.展开更多
Structural connections between components are often weak areas in engineering applications.In nature,many biological materials with remarkablemechanical performance possess flexible and creative sutures.In this work,w...Structural connections between components are often weak areas in engineering applications.In nature,many biological materials with remarkablemechanical performance possess flexible and creative sutures.In this work,we propose a novel bioinspired interlocking tab considering both the geometry of the tab head and neck,and demonstrate a new approach to optimize the bio-inspired interlocking structures based on machine learning.Artificial neural networks for different optimization objectives are developed and trained using a database of thousands of interlocking structures generated through finite element analysis.Results show that the proposed method is able to achieve accurate prediction of the mechanical response of any given interlocking tab.The optimized designs with different optimization objectives,such as strength,stiffness,and toughness,are obtained efficiently and precisely.The optimum design predicted by machine learning is approximately 7.98 times stronger and 2.98 times tougher than the best design in the training set,which are validated through additive manufacturing and experimental testing.The machine learning-based optimization approach developed here can aid in the exploration of the intricate mechanism behind biological materials and the discovery of new material designs boasting orders of magnitude increase in computational efficacy over conventional methods.展开更多
Research question/issue:This study examines whether geographic proximity produces a proximity preference as interlocking firms observe each other and learn innovative behaviors through information transmission among i...Research question/issue:This study examines whether geographic proximity produces a proximity preference as interlocking firms observe each other and learn innovative behaviors through information transmission among interlocking directors.Research findings/insights:We study the performance of A-share-listed companies in China from 2007 to 2017 on the basis of resource dependence theory,agglomeration effect theory,and Porter’s competitive theory.When target firms learn about research and development–related innovation behaviors from interlocking firms closer to them,they experience more efficient learning effects and have improved convergent traits.Moreover,this proximity advantage increases the willingness of the target firm to communicate with and learn from interlocking firms closer to them.Highly developed areas and research and development–intensive industries positively affect the learning efficiency of interlocking firms.Theoretical/academic implications:Our conclusion is consistent with resource dependence theory;target firms in highly developed areas are more willing to imitate and study nearby interlocking firms to maintain their peer relations,innovation potential,and competitiveness.Our conclusion is also consistent with competition theory,which states that the exchange of information between target firms in highly research and development–intensive industries and distant interlocking firms increases innovation differentiation,innovation potential,and competitiveness,even when such exchange has a high cost.Practitioner/policy implications:The results support resource dependence theory and peers’effects.The information obtained by interlocking directorates through external social relations guides firm decision-making,and closer distances reveal more obvious effects.展开更多
AIM: To define the optimum safe angle of use for an eccentrically aligned proximal interlocking screw(PIS) for intramedullary nailing(IMN).METHODS: Thirty-six dry cadaver ulnas were split into two equal pieces sagital...AIM: To define the optimum safe angle of use for an eccentrically aligned proximal interlocking screw(PIS) for intramedullary nailing(IMN).METHODS: Thirty-six dry cadaver ulnas were split into two equal pieces sagitally. The following points were identified for each ulna: the deepest point of the incisura olecrani(A), the point where perpendicular lines from A and the ideal IMN entry point(D) are intersected(C) and a point at 3.5 mm(2 mm safety distance from articular surface + 1.5 mm radius of PIS) posterior from point A(B). We calculated the angle of screws inserted from point D through to point B in relation to D-C and B-C. In addition, an eccentrically aligned screw was inserted at a standard 20° through the anterior cortex of the ulna in each bone and the articular surface wasobserved macroscopically for any damage.RESULTS: The mean A-C distance was 9.6 mm(mean ± SD, 9.600 ± 0.763 mm), A-B distance was 3.5 mm, C-D distance was 12.500 mm(12.500 ± 1.371 mm) and the mean angle was 25.9°(25.9°± 2.0°). Lack of articular damage was confirmed macroscopically in all bones after the 20.0° eccentrically aligned screws were inserted. Intramedullary nail fixation systems have well known biological and biomechanical advantages for osteosynthesis. However, as well as these well-known advantages, IMN fixation of the ulna has some limitations. Some important limitations are related to the proximal interlocking of the ulna nail. The location of the PIS itself limits the indications for which intramedullary systems can be selected as an implant for the ulna. The new PIS design, where the PIS is aligned 20°eccentrically to the nail body, allows fixing of fractures even at the level of the olecranon without disturbing the joint. It also allows the eccentrically aligned screw to be inserted in any direction except through the proximal radio-ulnar joint. Taking into consideration our results, we now use a 20° eccentrically aligned PIS for all ulnas. In our results, the angle required to insert the PIS was less than 20° for only one bone. However, 0.7° difference corresponds to placement of the screw only 0.2 mm closer to the articular surface. As we assume 2.0 mm to be a safe distance, a placement of the screw 0.2 mm closer to the articular surface may not produce any clinical symptoms.CONCLUSION: The new PIS may give us the opportunity to interlock IMN without articular damage and confirmation by fluoroscopy if the nail is manufactured with a PIS aligned at a 20.0° fixed angle in relation to the IMN.展开更多
Background: Internal splintage of open tibial fractures had gained acceptance as a preferred method of early stabilization of such injuries. Patients and Methods: Fifty-five patients had been operated upon. They were ...Background: Internal splintage of open tibial fractures had gained acceptance as a preferred method of early stabilization of such injuries. Patients and Methods: Fifty-five patients had been operated upon. They were followed from July 2008 to March 2013 (56 months) with an average time of 39 months. The final results had been evaluated through a scheme including 7 parameters: pain, union, malunion, infection, range motions of nearby joints, implant and technical failure and activity and returning to the same work. Results: According to previous parameters, union was achieved in 52 cases (94.5%) at an average time of 20 weeks (16 - 52 weeks) with 5.5% incidence of nonunion. Excellent and good ranges of knee and ankle motions were achieved at final follow-up visit in 49 cases (89.09%). The incidence of complication was acceptable mainly malunion 7.3%, deep infection 12.7%, implant and technical failure 9.1% full activity and returning to the same work achieved in 89.1%. The overall net results of our series are as follows: excellent—19 cases (34.5%), good—27 cases (49.1%), fair—6 cases (10.9%) and poor—3 cases (5.5%). Conclusion: Utilizing unreamed interlocking nail for open tibial fractures is a good method of treatment particularly those of grade (II), and (IIIA).展开更多
Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly re...Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly recommends the utilization of finite state machines during system modelling stage and formal proof methods during the verifi- cation and testing stages of control algorithms. Due to the high importance of interlocking table at the design state of a sig- nalization system, the modelling and verification of inter- locking tables are examined in this work. For this purpose, abstract state machines are used as a modelling tool. The developed models have been performed in a generalized structure such that the model control can be done automatically for the interlocking systems. In this study, NuSMV is used at the verification state. Also, the consistency of the developed models has been supervised through fault injection. The developed models and software components are applied on a real railway station operated by Metro Istanbul Co.展开更多
The computer interlocking system has a wide application in realizing interlocking control between the switch, the signal, and the track circuit in station. Due to the similarity between the binary tree and the station...The computer interlocking system has a wide application in realizing interlocking control between the switch, the signal, and the track circuit in station. Due to the similarity between the binary tree and the station-type data structure, the actual station route search method and the recursive algorithm are combined inorder to realize the computer interlocking route search. On this basis, through the design of switch class, track circuit class and signal machine class, by using C++ object-oriented the management of station data structure and entity object are realized, and then the crowding alarm, switch operations and so on in computer interlocking software. Taking the implementation of 5# station computer interlocking software as an example and based on are realized C++ the object-oriented computer interlocking software is written to provide a reference for realizing the railway computer interlocking training system function.展开更多
The feature of porous titanium is that new bone trabecular tissue could ingrow intoits pores and produce interlocking attachment.The spherical TC<sub>4</sub> powder and titanium fiberwere seperately implan...The feature of porous titanium is that new bone trabecular tissue could ingrow intoits pores and produce interlocking attachment.The spherical TC<sub>4</sub> powder and titanium fiberwere seperately implanted into the femurs of 24 dogs.The pore size of the samples was0.24mm and their rates of porosity were 40%~50%.After 3 months,the interface shearstrength examined by straight pulling test,was over 4.60±0.36MPa.Scanning electronmicroscopy showed that there were new bone components in the porous layer.Lightmicroscopy also revealed that there were new bone lacunae and their pathways in it.Thedepth of the reforming bone was 3 mm.Interface shear strength of the new bone in the po-rous layer might meet the need of load bearing.Porous materials would prevent the artificialjoint from loosening and thus help to develop a new service clinically.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12202257,12072184,12002197)。
文摘Inspired by brick-and-mortar architectures and suture interfaces,we propose a design of bioinspired nacre-like materials with interlocking sutures to improve the toughness of brittle materials.Laser-engraved glass interlockers are laminated with soft interlayers in a staggered arrangement,and the fundamental mechanical properties of the structure are investigated through experiments and numerical modeling.It is found that the tensile performance,such as the strength and toughness,is strongly affected by the interlocking angle and suture line spacing.The geometric interlocking originated from suture interfaces as well as tablet sliding arising from the staggered arrangement of interlockers cooperatively contribute to enhancing the strength and toughness of this bioinspired design.Additionally,the finite element modeling shows the interfacial failure and plastic deformation,revealing the interplay of the geometric interlocking mechanism and the sliding mechanism.This novel bioinspired design paves a new path for fabrication of structural materials combining high stiffness,high strength,and enhanced toughness.
基金supported by the National Research Foundation of Korea(NRF)Grant(RS-2024-00343512,RS-2024-00416938).
文摘Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability,necessitating the use of an insulating protective layer,which greatly limits their utility.Herein,we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.In this method,the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix,resulting in mechanical interlocking through percolation.This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates,significantly enhancing its universality in diverse applications.Thereby,we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor.Furthermore,enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment,broadening its application into various electrochemical devices.
基金financially supported by the National Natural Science Foundation of China (Nos. 52033011, 52173092 and 51973237)Natural Science Foundation of Guangdong Province(Nos. 2019B1515120038, 2020A1515011276 and 2021A1515010417)+4 种基金Science and Technology Planning Project of Guangzhou City (No. 202201011568)the Talented Program of Guizhou University (No. X2022008)Fundamental Research Funds for the Central Universities,Sun Yat-sen University (No. 23yxqntd002)GBRCE for Functional Molecular Engineering,the Youth Innovation Promotion Association,CAS(No. 2020010)Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110908)。
文摘Recently, we reported a series of reversibly interlocked polymer networks(RILNs), whose mechanical robustness and functionalities improvement was believed to be derived from topological interlocking of two sub-networks, although the direct evidence for the deduction is still lacking. Herein, a specially-designed RILNs system, in which the inter-component hydrogen bonds can be shielded as needed, was prepared and used to study the micro-structures of RILNs, aiming to verify the existence of mechanical interlocking in RILNs. By changing the pH of the swelling solvent, the effect exerted by the inter-component non-covalent bonds was eliminated, so detailed information of the networks structure was exposed. The small angle X-ray scattering(SAXS) and small-angle neutron scattering(SANS) results indicated that swelling-induced structural evolution of the two sub-networks mutually affected each other, even when the inter-component hydrogen bonds were absent, proving the presence of topological interlocking. The findings may help to draw a more accurate physical image and reveal the detailed structureproperty relationship of RILNs.
基金financially supported by the National Natural Science Foundation of China(No.22001066)the Natural Science Foundation of Hunan Province(Nos.2021JJ40049 and 2022JJ20007)+3 种基金the Science and Technology Innovation Program of Hunan Province(No.2022RC1115)J.Du acknowledges the Science and Technology Project of Hebei Education Department(No.QN2023049)Science Foundation of Hebei Normal University(No.L2023B51)TianHe-2(LvLiang,China)Cloud Computing Center for support。
文摘A bottleneck in biomimetic synthesis consists in the full copy of,for example,the hierarchical structure of proteins directed by weak interactions.By contrast with covalent bonds bearing definite orientation and high stability,weak intermolecular forces within a continuous dynamic equilibrium can be hardly tamed for molecular design.In this endeavor,a ligand-dominated strategy that embodies tunable electrostatic repulsion andπ···πstacking was first employed to shape polyoxovanadate-based metal-organic polyhedra(VMOPs).Structural evolution involving transformation,interlock,and discovery of an unprecedented prototype of the Star of David was hence achievable.Not only as a handy tool for the primary structural control over VMOPs,these weak forces allow for an advanced management on the spatial distribution of such manmade macromolecules as well as the associated physicochemical behaviors,representing an ideal model for simulating and interpreting the conformation-function relationship of proteins.
基金Projects(51571214,51301205,51101126)supported by the National Natural Science Foundation of ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China+4 种基金Project(20130162120001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(K1308034-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject supported by the Innovation-driven Plan in Central South University,ChinaProject supported by the Independent Project of State Key Laboratory of Powder Metallurgy of Central South University,China
文摘The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.
文摘BACKGROUND Intertrochanteric(IT)fracture is one of the most common fractures seen in an orthopaedic practice.Proximal femoral nailing(PFN)is a common modality of fixing IT femur fracture.We retrospectively studied whether a PFN with two proximal lag screws can be done without distal interlocking screws in the 31-A1 and 31-A2 fracture patterns according to the Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association(AO/OTA)guidelines for IT femur fractures.AIM To compare the outcomes of IT fractures(AO/OTA 31-A1 and 31-A2)treated by PFN with and without distal interlocking screws.METHODS We carried out a retrospective study of 140 patients in a tertiary care centre who had AO/OTA type 31-A1 and 31-A2 IT fractures.We divided the patients into two groups,in which one of the groups received distal interlocking screws(group 1)and the other group did not(group 2).The subjects were followed up for a mean period of 14 mo and assessed for radiological union time,fracture site collapse,mechanical stability of implant,and complications associated with the PFN with distal interlocking and without distal interlocking.Then,the results were compared.RESULTS PFN without distal interlocking screws has several advantages and gives better results over PFN with distal interlocking screws in the AO/OTA 31-A2 fracture pattern.However,similar results were observed in both groups with the fracture pattern AO/OTA 31-A1.In patients with fracture pattern AO/OTA 31-A2 treated by PFN without distal interlocking screws,there were minimal proximal lockrelated complications and no risk of distal interlock-related complications.The operative time,IITV radiation time and time to radiological union were reduced.These patients also had better rotational alignment of the proximal femur,and the anatomy of the proximal femur was well maintained.It was also noted that in the cases where distal interlocking was performed,there was a gradual decrease in neck shaft angle,which led to varus collapse and failure of bone-implant construct in 21.40%.CONCLUSION In fracture pattern AO/OTA 31-A2,PFN without distal interlocking had better results and less complications than PFN with distal interlocking.
基金Sub-global project of UN Millennium Ecosystem Assessment (MA) Programkey project of international collaboration funded by the Ministry of Science and TechnologyThe Knowledge Innovation Project of CAS, No.KZCX02-308
文摘This paper discusses land-use changes in the interlock area of farming and pasturing (IAFP) in northern China. It presents detailed analyses of land-use features in the IAFP, which are controlled by the macro geomorphic units and geophysical conditions-constraints or advantages. Additionally, it selects some indicators, according to the availability in acquiring and processing their quantitative data, to analyze the canonical correlations between the typical conversion of grassland and geophysical conditions. The preliminary study indicates that the physical conditions are of great advantages to the development of grassland. There exists significant correlation between land use change and some geophysical conditions.
文摘The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel.
文摘Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the personnel safety interlock system mainly considers measures to protect personnel from radiation hazards during beam preparation and the beam release process.Unlike other safety interlock systems,the personnel safety interlock system designed in this study focuses on the safety and stability of the system itself.The hardware and software of important interlock control loops are designed and developed according to the requirements of Safety Integrity Level 3 specified by IEC61508.A set of redundant ring networks was developed to ensure that damage to a certain network line does not affect the normal operation of the system.A set of friendly operation interfaces and data storage systems were developed to ensure that the operator can monitor the data in real time and trace the data.The personnel safety interlock system mainly includes a beam enabling function,clearance function,and emergency stop function.The system was put into actual use and successfully ensured personnel safety.
基金Project supported by the National Natural Science Foundation of China (No.90405015)
文摘A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.
基金financial support from the National Natural Science Foundation of China(NSFC Grant No.61625404,61888102,62174152)Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)+1 种基金the Strategic Priority Program of the Chinese Academy of Sciences,Grant No XDA16021100the Science and Technology Development Plan of Jilin Province(20210101168JC).
文摘Two-dimensional(2D)materials have attracted considerable interest thanks to their unique electronic/physical-chemical characteristics and their potential for use in a large variety of sensing applications.However,few-layered nanosheets tend to agglomerate owing to van der Waals forces,which obstruct internal nanoscale transport channels,resulting in low electrochemical activity and restricting their use for sensing purposes.Here,a hybrid MXene/rGO aerogel with a three-dimensional(3D)interlocked network was fabricated via a freeze-drying method.The porous MXene/rGO aerogel has a lightweight and hierarchical porous architecture,which can be compressed and expanded several times without breaking.Additionally,a flexible pressure sensor that uses the aerogel as the sensitive layer has a wide response range of approximately 0-40 kPa and a considerable response within this range,averaging approximately 61.49 kPa^(-1).The excellent sensing performance endows it with a broad range of applications,including human-computer interfaces and human health monitoring.
基金supported by the National Natural Science Foundation of China,Grant No.51875440.
文摘Structural connections between components are often weak areas in engineering applications.In nature,many biological materials with remarkablemechanical performance possess flexible and creative sutures.In this work,we propose a novel bioinspired interlocking tab considering both the geometry of the tab head and neck,and demonstrate a new approach to optimize the bio-inspired interlocking structures based on machine learning.Artificial neural networks for different optimization objectives are developed and trained using a database of thousands of interlocking structures generated through finite element analysis.Results show that the proposed method is able to achieve accurate prediction of the mechanical response of any given interlocking tab.The optimized designs with different optimization objectives,such as strength,stiffness,and toughness,are obtained efficiently and precisely.The optimum design predicted by machine learning is approximately 7.98 times stronger and 2.98 times tougher than the best design in the training set,which are validated through additive manufacturing and experimental testing.The machine learning-based optimization approach developed here can aid in the exploration of the intricate mechanism behind biological materials and the discovery of new material designs boasting orders of magnitude increase in computational efficacy over conventional methods.
基金funded by the NSFC number(71903199)NSSFC number(19ZDA061,19AJY027)Financial support from the Innovation and Talent Base for Digital Technology and Finance(B21038).
文摘Research question/issue:This study examines whether geographic proximity produces a proximity preference as interlocking firms observe each other and learn innovative behaviors through information transmission among interlocking directors.Research findings/insights:We study the performance of A-share-listed companies in China from 2007 to 2017 on the basis of resource dependence theory,agglomeration effect theory,and Porter’s competitive theory.When target firms learn about research and development–related innovation behaviors from interlocking firms closer to them,they experience more efficient learning effects and have improved convergent traits.Moreover,this proximity advantage increases the willingness of the target firm to communicate with and learn from interlocking firms closer to them.Highly developed areas and research and development–intensive industries positively affect the learning efficiency of interlocking firms.Theoretical/academic implications:Our conclusion is consistent with resource dependence theory;target firms in highly developed areas are more willing to imitate and study nearby interlocking firms to maintain their peer relations,innovation potential,and competitiveness.Our conclusion is also consistent with competition theory,which states that the exchange of information between target firms in highly research and development–intensive industries and distant interlocking firms increases innovation differentiation,innovation potential,and competitiveness,even when such exchange has a high cost.Practitioner/policy implications:The results support resource dependence theory and peers’effects.The information obtained by interlocking directorates through external social relations guides firm decision-making,and closer distances reveal more obvious effects.
文摘AIM: To define the optimum safe angle of use for an eccentrically aligned proximal interlocking screw(PIS) for intramedullary nailing(IMN).METHODS: Thirty-six dry cadaver ulnas were split into two equal pieces sagitally. The following points were identified for each ulna: the deepest point of the incisura olecrani(A), the point where perpendicular lines from A and the ideal IMN entry point(D) are intersected(C) and a point at 3.5 mm(2 mm safety distance from articular surface + 1.5 mm radius of PIS) posterior from point A(B). We calculated the angle of screws inserted from point D through to point B in relation to D-C and B-C. In addition, an eccentrically aligned screw was inserted at a standard 20° through the anterior cortex of the ulna in each bone and the articular surface wasobserved macroscopically for any damage.RESULTS: The mean A-C distance was 9.6 mm(mean ± SD, 9.600 ± 0.763 mm), A-B distance was 3.5 mm, C-D distance was 12.500 mm(12.500 ± 1.371 mm) and the mean angle was 25.9°(25.9°± 2.0°). Lack of articular damage was confirmed macroscopically in all bones after the 20.0° eccentrically aligned screws were inserted. Intramedullary nail fixation systems have well known biological and biomechanical advantages for osteosynthesis. However, as well as these well-known advantages, IMN fixation of the ulna has some limitations. Some important limitations are related to the proximal interlocking of the ulna nail. The location of the PIS itself limits the indications for which intramedullary systems can be selected as an implant for the ulna. The new PIS design, where the PIS is aligned 20°eccentrically to the nail body, allows fixing of fractures even at the level of the olecranon without disturbing the joint. It also allows the eccentrically aligned screw to be inserted in any direction except through the proximal radio-ulnar joint. Taking into consideration our results, we now use a 20° eccentrically aligned PIS for all ulnas. In our results, the angle required to insert the PIS was less than 20° for only one bone. However, 0.7° difference corresponds to placement of the screw only 0.2 mm closer to the articular surface. As we assume 2.0 mm to be a safe distance, a placement of the screw 0.2 mm closer to the articular surface may not produce any clinical symptoms.CONCLUSION: The new PIS may give us the opportunity to interlock IMN without articular damage and confirmation by fluoroscopy if the nail is manufactured with a PIS aligned at a 20.0° fixed angle in relation to the IMN.
文摘Background: Internal splintage of open tibial fractures had gained acceptance as a preferred method of early stabilization of such injuries. Patients and Methods: Fifty-five patients had been operated upon. They were followed from July 2008 to March 2013 (56 months) with an average time of 39 months. The final results had been evaluated through a scheme including 7 parameters: pain, union, malunion, infection, range motions of nearby joints, implant and technical failure and activity and returning to the same work. Results: According to previous parameters, union was achieved in 52 cases (94.5%) at an average time of 20 weeks (16 - 52 weeks) with 5.5% incidence of nonunion. Excellent and good ranges of knee and ankle motions were achieved at final follow-up visit in 49 cases (89.09%). The incidence of complication was acceptable mainly malunion 7.3%, deep infection 12.7%, implant and technical failure 9.1% full activity and returning to the same work achieved in 89.1%. The overall net results of our series are as follows: excellent—19 cases (34.5%), good—27 cases (49.1%), fair—6 cases (10.9%) and poor—3 cases (5.5%). Conclusion: Utilizing unreamed interlocking nail for open tibial fractures is a good method of treatment particularly those of grade (II), and (IIIA).
文摘Railway transportation system is a critical sector where design methods and techniques are defined by international standards in order to reduce possible risks to an acceptable minimum level. CENELEC 50128 strongly recommends the utilization of finite state machines during system modelling stage and formal proof methods during the verifi- cation and testing stages of control algorithms. Due to the high importance of interlocking table at the design state of a sig- nalization system, the modelling and verification of inter- locking tables are examined in this work. For this purpose, abstract state machines are used as a modelling tool. The developed models have been performed in a generalized structure such that the model control can be done automatically for the interlocking systems. In this study, NuSMV is used at the verification state. Also, the consistency of the developed models has been supervised through fault injection. The developed models and software components are applied on a real railway station operated by Metro Istanbul Co.
文摘The computer interlocking system has a wide application in realizing interlocking control between the switch, the signal, and the track circuit in station. Due to the similarity between the binary tree and the station-type data structure, the actual station route search method and the recursive algorithm are combined inorder to realize the computer interlocking route search. On this basis, through the design of switch class, track circuit class and signal machine class, by using C++ object-oriented the management of station data structure and entity object are realized, and then the crowding alarm, switch operations and so on in computer interlocking software. Taking the implementation of 5# station computer interlocking software as an example and based on are realized C++ the object-oriented computer interlocking software is written to provide a reference for realizing the railway computer interlocking training system function.
文摘The feature of porous titanium is that new bone trabecular tissue could ingrow intoits pores and produce interlocking attachment.The spherical TC<sub>4</sub> powder and titanium fiberwere seperately implanted into the femurs of 24 dogs.The pore size of the samples was0.24mm and their rates of porosity were 40%~50%.After 3 months,the interface shearstrength examined by straight pulling test,was over 4.60±0.36MPa.Scanning electronmicroscopy showed that there were new bone components in the porous layer.Lightmicroscopy also revealed that there were new bone lacunae and their pathways in it.Thedepth of the reforming bone was 3 mm.Interface shear strength of the new bone in the po-rous layer might meet the need of load bearing.Porous materials would prevent the artificialjoint from loosening and thus help to develop a new service clinically.