The interior Radon transform arises from a limited data problem in computerized tomography. The corresponding operator R is investigated as a mapping between wightedL 2-spaces. Our result is the explicit construction ...The interior Radon transform arises from a limited data problem in computerized tomography. The corresponding operator R is investigated as a mapping between wightedL 2-spaces. Our result is the explicit construction of a singular value decomposition for R. This immediately leads to an inversion formula by series expansion and range characterizations.展开更多
A Lema<span style="white-space:nowrap;">î</span>tre transformation is set up for the free fall in the interior of a stellar object using the frame of the interior Schwarzschild solution...A Lema<span style="white-space:nowrap;">î</span>tre transformation is set up for the free fall in the interior of a stellar object using the frame of the interior Schwarzschild solution. The metric is calculated in comoving coordinates and field strengths are derived for this metric.展开更多
This work focuses on the application of the reconstruction method of differentiated backprojection (DBP)-projection onto convex sets (POCS) in the interior problem.First,we present the definition of the interior p...This work focuses on the application of the reconstruction method of differentiated backprojection (DBP)-projection onto convex sets (POCS) in the interior problem.First,we present the definition of the interior problem and real truncated Hilbert transform,and then outline the implementation steps of DBP-POCS.After that,we introduce the middle-part known condition for region of interest (ROI) accurate reconstruction and the unique condition of the interior problem,and verify the uniqueness and stability of the interior problem accurate reconstruction through numerical experiments,and then compare the results for the interior problem in reconstruction images using filtered backprojection (FBP).In addition,the authors also design the application models of ROI reconstruction and make an initial attempt to the application of DBP-POCS method in the interior problem.展开更多
In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids....In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformation. Then, a fourth order compact difference scheme is proposed to solve the transformed elliptic equation on uniform girds. After that, a multigrid method is employed to solve the linear algebraic system arising from the difference equation. At last, the numerical experiments on some elliptic problems with interior/boundary layers are conducted to show high accuracy and high efficiency of the present method.展开更多
基金Supported by the Foundation of the Ministry of Education of China and the Science Foundation of Wuhan University
文摘The interior Radon transform arises from a limited data problem in computerized tomography. The corresponding operator R is investigated as a mapping between wightedL 2-spaces. Our result is the explicit construction of a singular value decomposition for R. This immediately leads to an inversion formula by series expansion and range characterizations.
文摘A Lema<span style="white-space:nowrap;">î</span>tre transformation is set up for the free fall in the interior of a stellar object using the frame of the interior Schwarzschild solution. The metric is calculated in comoving coordinates and field strengths are derived for this metric.
基金supported by the National Natural Science Foundation of China (Grant No.60872116)
文摘This work focuses on the application of the reconstruction method of differentiated backprojection (DBP)-projection onto convex sets (POCS) in the interior problem.First,we present the definition of the interior problem and real truncated Hilbert transform,and then outline the implementation steps of DBP-POCS.After that,we introduce the middle-part known condition for region of interest (ROI) accurate reconstruction and the unique condition of the interior problem,and verify the uniqueness and stability of the interior problem accurate reconstruction through numerical experiments,and then compare the results for the interior problem in reconstruction images using filtered backprojection (FBP).In addition,the authors also design the application models of ROI reconstruction and make an initial attempt to the application of DBP-POCS method in the interior problem.
文摘In this paper, a high order compact difference scheme and a multigrid method are proposed for solving two-dimensional (2D) elliptic problems with variable coefficients and interior/boundary layers on nonuniform grids. Firstly, the original equation is transformed from the physical domain (with a nonuniform mesh) to the computational domain (with a uniform mesh) by using a coordinate transformation. Then, a fourth order compact difference scheme is proposed to solve the transformed elliptic equation on uniform girds. After that, a multigrid method is employed to solve the linear algebraic system arising from the difference equation. At last, the numerical experiments on some elliptic problems with interior/boundary layers are conducted to show high accuracy and high efficiency of the present method.