According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of dir...According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.展开更多
A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on ...Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.展开更多
Photonic materials,which react to light,have garnered interest due to their capability to exhibit adjustable structural colors.Typically,light targets the UV,visible,or near-IR spectrums.In this study,microgel-based p...Photonic materials,which react to light,have garnered interest due to their capability to exhibit adjustable structural colors.Typically,light targets the UV,visible,or near-IR spectrums.In this study,microgel-based photonic materials that are capable of reversibly responding to Xrays have been engineered.To accomplish this,azobenzene(Azo)-containing poly(N-isopropylacrylamide)(pNiPAm)-based microgels are synthesized.Subsequently,ZnS scintillator and Cr/Au are applied on each side of the poly(methyl methacrylate(PMMA)substrate.Subsequently,the Azo MG monolayer is deposited onto the Au surface,followed by the deposition of an additional layer of Cr/Au.This process generates ZnS/PMMA/Cr/Au/Azo MG/Cr/Au or ZnS/Au-Azo MG-Au structure.Functioning as a typical interferometer,ZnS/Au-Azo MG-Au demonstrates tunable colors based on the separation distance between the two Au layers.The ZnS scintillator can absorb and convert X-rays into Uv light,initiating the transition of the Azo groups from a trans to a cis state.Consequently,this transition causes the Azo MG to swell.As Azo MG swells,the distance between the two Au layers increases,resulting in a red-shift of approximately 350 nm in the optical signal of the ZnS/Au-Azo MG-Au interferometer.Remarkably,this X-ray responsivity of the interferometer is reversible,as it returns to its initial state after being stored in the dark for 24 h.To demonstrate its capabilities,the ZnS/Au-Azo MG-Au interferometer successfully releases a drug when triggered by X-ray stimulation,thus validating its potential.The microgel-based interferometers hold significant promise for applications in chemoradiotherapy,radiobiology,and actuators in space.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been...Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other ...A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.展开更多
A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged el...A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.展开更多
Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 ...Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.展开更多
The present study delves into the application of investigating quantum state behaviour,particularly focusing on coherent and superposition states.These states,characterized by their remarkable stability and precision,...The present study delves into the application of investigating quantum state behaviour,particularly focusing on coherent and superposition states.These states,characterized by their remarkable stability and precision,have found extensive utility in various domains of quantum mechanics and quantum information processing.Coherent states are valuable for manipulating quantum systems with accuracy.Superposition states allow quantum systems to exist in numerous configurations at the same time,which paves the way for quantum computing’s capacity for parallel processing.The research accentuates the crucial role of quantum error correction(QEC)in ensuring the stability and reliability of quantum information processing systems.Quantum systems are prone to errors from decoherence and environmental noise,making QEC essential for ensuring accurate results by employing the Shor code,an error-correcting code devised by Peter Shor,it becomes feasible to detect and rectify errors that may arise during quantum computations.The Shor code detects and corrects both bit-flip and phase-flip errors,greatly enhancing the robustness of quantum information systems.This research offers insights into the multifaceted utility of MZI(Mach-Zehnder interferometer)and its relevance in the advancement of quantum technology.By integrating QEC with the capabilities of MZI,this study offers a holistic approach to advancing the precision and reliability of quantum technologies.展开更多
A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabric...A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity.展开更多
Distributed fiber-optic sensing(DFOS)can turn the worldwide fiber network into a sensing array,which may immensely extend the sensing range and approaches for hazard assessment,earth observation,and human activity mea...Distributed fiber-optic sensing(DFOS)can turn the worldwide fiber network into a sensing array,which may immensely extend the sensing range and approaches for hazard assessment,earth observation,and human activity measurement.However,most existing DFOS schemes cannot simultaneously give dual attention to the detection ability(for example,sensing distance)and multipoint localizing function.A mirror-image correlation method is proposed and can precisely extract the time delay between two original signals from their composite detected signal.This method enables the distributed vibration sensing function of the laser interferometer and maintains its high detection ability.We demonstrate its feasibility by simultaneously localizing multiple knocking vibrations on a 250-km round-trip fiber and distinguishing traffic vibrations at two urban positions in a field test.The localizing precision is analyzed and satisfies the requirements for fiber network sensing.展开更多
In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with at...In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with attention mechanism, Video Vision Transformer (ViViT), and Long-term Recurrent Convolutional Network (LRCN)—were evaluated to determine the most effective method for analyzing time series patterns generated by a Michelson interferometer. The interferometer was used to detect vibration modes created by handwriting, capturing time-series data from the diffraction patterns. Among these models, the LSTM-Attention network achieved the highest validation accuracy, reaching up to 92%, outperforming both ViViT and LRCN. These findings highlight the potential of deep learning in material science for detecting and classifying vibration patterns. The powerful performance of the LSTM-Attention model suggests that it could be applied to similar classification tasks in related fields.展开更多
Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research r...Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research require a easily controllable chaotic oscillator.Chaotic behavior in optical bistability provides a simple theoretical model.Based on the theoretical model,a novel chaotic oscillator in frequency domain is proposed.The chaotic oscillator is composed of a tunable fiber laser,fiber Fabry⁃Perot interferometer(FFPI)and hybrid delayed feedback loop.The laser itself plays a part in delay time which is induced by PZT device.The chaotic oscillator is realized by experiments and chaos behaviors are observed.The chaos oscillator has the characteristic of simplicity and flexibility.It have potential application value in the field of fiber optical communication encryption.展开更多
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
文摘According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
文摘Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.
基金supported by Natural Science Foundation of Jiangsu Province(No.BK20221359)Interdisciplinary Basic Frontier Innovation Program of Suzhou Medical College of Soochow University,State Key Laboratory of Radiation Medicine and Protection(No.GZC00501)+1 种基金the National Natural Science Foundation of China(No.51873137)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Photonic materials,which react to light,have garnered interest due to their capability to exhibit adjustable structural colors.Typically,light targets the UV,visible,or near-IR spectrums.In this study,microgel-based photonic materials that are capable of reversibly responding to Xrays have been engineered.To accomplish this,azobenzene(Azo)-containing poly(N-isopropylacrylamide)(pNiPAm)-based microgels are synthesized.Subsequently,ZnS scintillator and Cr/Au are applied on each side of the poly(methyl methacrylate(PMMA)substrate.Subsequently,the Azo MG monolayer is deposited onto the Au surface,followed by the deposition of an additional layer of Cr/Au.This process generates ZnS/PMMA/Cr/Au/Azo MG/Cr/Au or ZnS/Au-Azo MG-Au structure.Functioning as a typical interferometer,ZnS/Au-Azo MG-Au demonstrates tunable colors based on the separation distance between the two Au layers.The ZnS scintillator can absorb and convert X-rays into Uv light,initiating the transition of the Azo groups from a trans to a cis state.Consequently,this transition causes the Azo MG to swell.As Azo MG swells,the distance between the two Au layers increases,resulting in a red-shift of approximately 350 nm in the optical signal of the ZnS/Au-Azo MG-Au interferometer.Remarkably,this X-ray responsivity of the interferometer is reversible,as it returns to its initial state after being stored in the dark for 24 h.To demonstrate its capabilities,the ZnS/Au-Azo MG-Au interferometer successfully releases a drug when triggered by X-ray stimulation,thus validating its potential.The microgel-based interferometers hold significant promise for applications in chemoradiotherapy,radiobiology,and actuators in space.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘Electron density in fusion plasma is usually diagnosed using laser-aided interferometers. The phase difference signal obtained after phase demodulation is wrapped, which is also called a fringe jump. A method has been developed to unwrap the phase difference signal in real time using FPGA, specifically designed to handle fringe jumps in the hydrogen cyanide(HCN) laser interferometer on the EAST superconducting tokamak. This method is designed for a phase demodulator using the fast Fourier transform(FFT) method at the front end. The method is better adapted for hardware implementation compared to complex mathematical analysis algorithms, such as field programmable gate array(FPGA). It has been applied to process the phase measurement results of the HCN laser interferometer on EAST in real time. Electron density results show good confidence in the fringe jump unwrapping method. Further possible application in other laser interferometers, such as the POlarimeter-INTerferometer(POINT)system on EAST tokamak is also discussed.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
基金Project supported by the Shanxi Key Research and Development Project(Grant No.2019ZDLGY09-08)Shanxi Nature and Science Basic Research Project(Grant No.2019JLP-18).
文摘A new type of polarization sensitive interferometer is proposed,named the Delta interferometer,inspired by its geometry resembling the Greek letter Delta.The main difference between the Delta interferometer and other existing interferometers,such as Michelson,Mach-Zehnder and Young's double-slit interferometers,is that the two interfering paths are asymmetrical in the Delta interferometer.The visibility of the first-order interference pattern observed in the Delta interferometer is dependent on the polarization of the incidental light.Optical coherence theory is employed to interpret this phenomenon and single-mode continuous-wave laser light is employed to verify the theoretical predictions.The theoretical and experimental results are consistent.The Delta interferometer is a perfect tool to study the reflection of electromagnetic fields in different polarizations and may find applications in polarization-sensitive scenarios.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-7301-001228)the Major Special Science and Technology Project of Anhui Province(No.912188707023)。
文摘A dispersion interferometer(DI)has been installed and operates on the Experimental Advanced Superconducting Tokamak(EAST).This DI system utilizes a continuous-wave 9.3μm CO_(2)laser source to measure line-averaged electron densities accurately.In contrast to conventional interferometers,the DI does not require substantial vibration isolations or compensating systems to reduce the impact of vibrations in the optical path.It also employs a ratio of modulation amplitudes,ensuring it remains immune to the variations in detected intensities.Without a variation compensation system,the DI system on EAST reaches a density resolution of less than1.8×10^(-2)πrad and a temporal resolution of 20μs.The measurements made by the POlarimeterINTerferometer(POINT)system and the far-infrared hydrogen cyanide(HCN)interferometer are remarkably consistent with the DI’s results.The possibility of fringe jumps and the impact of refraction in high-density discharge can be significantly decreased using a shorter wavelength laser source.A rapid density change of 3×10^(19)m^(-3)during 0.15 s has been measured accurately in shot No.114755 of EAST.Additionally,the DI system demonstrates dependability and stability under 305 s long-pulse discharges in shot No.122054.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03020004,2018YFE0304102 and 2019YFE03020002)the Department of Science and Technology of Sichuan Province(No.2020YJ0463)。
文摘Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3.
文摘The present study delves into the application of investigating quantum state behaviour,particularly focusing on coherent and superposition states.These states,characterized by their remarkable stability and precision,have found extensive utility in various domains of quantum mechanics and quantum information processing.Coherent states are valuable for manipulating quantum systems with accuracy.Superposition states allow quantum systems to exist in numerous configurations at the same time,which paves the way for quantum computing’s capacity for parallel processing.The research accentuates the crucial role of quantum error correction(QEC)in ensuring the stability and reliability of quantum information processing systems.Quantum systems are prone to errors from decoherence and environmental noise,making QEC essential for ensuring accurate results by employing the Shor code,an error-correcting code devised by Peter Shor,it becomes feasible to detect and rectify errors that may arise during quantum computations.The Shor code detects and corrects both bit-flip and phase-flip errors,greatly enhancing the robustness of quantum information systems.This research offers insights into the multifaceted utility of MZI(Mach-Zehnder interferometer)and its relevance in the advancement of quantum technology.By integrating QEC with the capabilities of MZI,this study offers a holistic approach to advancing the precision and reliability of quantum technologies.
基金supported by the National Natural Science Foundation of China(Grant No.61975167).
文摘A compact and high-resolution fiber-optic refractive index(RI)sensor based on a microwave photonic filter(MPF)is proposed and experimentally validated.The sensing head utilizes a cascaded in-line interferometer fabricated by an input single-mode fiber(SMF)tapered fusion with no-core fiber-thin-core fiber(TCF)-SMF.The surrounding RI(SRI)can be demodulated by tracing the passband’s central frequency of the MPF,which is constructed by the cascaded in-line interferometer,electro-optic modulator,and a section of dispersion compensation fiber.The sensitivity of the sensor is tailorable through the use of different lengths of TCF.Experimental results reveal that with a 30 mm length of TCF,the sensor achieves a maximum theoretical sensitivity and resolution of-1.403 GHz∕refractive index unit eRIUT and 1.425×10^(-7) RIU,respectively,which is at least 6.3 times higher than what has been reported previously.Furthermore,the sensor exhibits temperature-insensitive characteristics within the range of 25℃-75℃,with a temperatureinduced frequency change of only±1.5 MHz.This value is significantly lower than the frequency change induced by changes in the SRI.The proposed MPF-based cascaded in-line interferometer RI sensor possesses benefits such as easy manufacture,low cost,high resolution,and temperature insensitivity.
基金supported by the National Natural Science Foundation of China(Grant No.62171249)the National Key R&D Program of China(Grant No.2021YFA1402102)the Tsinghua Initiative Scientific Research Program.
文摘Distributed fiber-optic sensing(DFOS)can turn the worldwide fiber network into a sensing array,which may immensely extend the sensing range and approaches for hazard assessment,earth observation,and human activity measurement.However,most existing DFOS schemes cannot simultaneously give dual attention to the detection ability(for example,sensing distance)and multipoint localizing function.A mirror-image correlation method is proposed and can precisely extract the time delay between two original signals from their composite detected signal.This method enables the distributed vibration sensing function of the laser interferometer and maintains its high detection ability.We demonstrate its feasibility by simultaneously localizing multiple knocking vibrations on a 250-km round-trip fiber and distinguishing traffic vibrations at two urban positions in a field test.The localizing precision is analyzed and satisfies the requirements for fiber network sensing.
文摘In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with attention mechanism, Video Vision Transformer (ViViT), and Long-term Recurrent Convolutional Network (LRCN)—were evaluated to determine the most effective method for analyzing time series patterns generated by a Michelson interferometer. The interferometer was used to detect vibration modes created by handwriting, capturing time-series data from the diffraction patterns. Among these models, the LSTM-Attention network achieved the highest validation accuracy, reaching up to 92%, outperforming both ViViT and LRCN. These findings highlight the potential of deep learning in material science for detecting and classifying vibration patterns. The powerful performance of the LSTM-Attention model suggests that it could be applied to similar classification tasks in related fields.
文摘Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research require a easily controllable chaotic oscillator.Chaotic behavior in optical bistability provides a simple theoretical model.Based on the theoretical model,a novel chaotic oscillator in frequency domain is proposed.The chaotic oscillator is composed of a tunable fiber laser,fiber Fabry⁃Perot interferometer(FFPI)and hybrid delayed feedback loop.The laser itself plays a part in delay time which is induced by PZT device.The chaotic oscillator is realized by experiments and chaos behaviors are observed.The chaos oscillator has the characteristic of simplicity and flexibility.It have potential application value in the field of fiber optical communication encryption.
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.