期刊文献+
共找到5,173篇文章
< 1 2 250 >
每页显示 20 50 100
Development of STEP AP224 Extractor for Interfacing Feature Based CAPP to STEP-NC(AP238) 被引量:1
1
作者 Deepanshu Srivastava Venkateswara Rao Komma 《International Journal of Automation and computing》 EI CSCD 2019年第5期655-670,共16页
Manufacturing features represent area of interest on the machinable surface of a part, which can provide a unique set of removable volumes from part. Feature description in standard for exchange of product(STEP) AP224... Manufacturing features represent area of interest on the machinable surface of a part, which can provide a unique set of removable volumes from part. Feature description in standard for exchange of product(STEP) AP224 is an efficient neutral format for the development of feature based process planning. Process planning information of features can be converted to numerical control(NC)code to have complete manufacturing information of part. STEP-NC code provides an efficient manufacturing information model compared to G-M codes. In this work, an interface is developed for extraction of feature information available in AP224(AIM) format and the ruled-based approach is used to select different process planning parameters. A graphical user interface(GUI) is developed for the interface for displaying features information as represented in AP224 file. Furthermore, the interface generates STEP-NC code in AP238 format. The developed interface has three modules. 1) Module I: Reading interface for STEP AP224 file and development of GUI. 2)Module II: Selection of feature based process planning parameters. 3) Module III: Writing interface for STEP-NC(AP238). The developed interface has been implemented in Java through Java standard data access interface(JSDAITM). The generated STEP-NC AP238 code for the test part has been successfully simulated on STEP-NC Machine TM, an AP238 simulator. This article also provides an in-depth view of application interpreted model(AIM) representation format of STEP for AP224 and AP238. 展开更多
关键词 STANDARD for exchange of product (STEP) AP224 AP238 Java STANDARD data access interface (JSDAITM) COMPUTER aided design(CAD)/computer aided process planning(CAPP)/computer aided manufacturing(CAM)
原文传递
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
2
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
在线阅读 下载PDF
On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals in Brain-Computer Interfacing
3
作者 David Steyrl Reinmar J. Kobler Gernot R. Müller-Putz 《Journal of Biomedical Science and Engineering》 2016年第8期393-398,共7页
We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although... We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although invasive and non-invasive BCI signals are different, the underlying origin of electrical BCIs signals is the same. 展开更多
关键词 Brain-Computer Interfaces Electrical Brain Signals Invasive Signals Non-Invasive Signals COMPARISON
在线阅读 下载PDF
An Overview of Bidirectional DC-DC Converter Topologies and Control Strategies for Interfacing Energy Storage Systems in Microgrids
4
作者 Nisha Kondrath 《Journal of Electrical Engineering》 2018年第1期11-17,共7页
A microgrid is defined as a local electric power distribution system with diverse DG (distributed generation) units, energy storage systems, and loads, which can operate as a part of the distribution system or when ... A microgrid is defined as a local electric power distribution system with diverse DG (distributed generation) units, energy storage systems, and loads, which can operate as a part of the distribution system or when needed can operate in an islanded mode. Energy storage systems play a key role in improving security, stability, and power quality of the microgrid. During grid-connected mode, these storage units are charged from various DG sources as well as the main grid. During islanded mode, DG sources along with the storage units need to supply the load. Power electronic interfaces between the microgrid buses and the storage units should be able to detect the mode of operation, allow seamless transition between the modes, and allow power flow in both directions, while maintaining stability and power quality. An overview of bidirectional converter topologies relevant to microgrid energy storage application and their control strategies will be presented in this paper. 展开更多
关键词 MICROGRID energy-storage systems power electronic interface bidirectional converters.
在线阅读 下载PDF
Remote interfacing between superconducting qubits and Rydberg-atom qubits via thermal coupled cavities
5
作者 Zhen-Tao Liang Guo-Qing Zhang +5 位作者 Jianhao Yuan Qinzhou Ye Kaiyu Liao Zheng-Yuan Xue Hui Yan Shi-Liang Zhu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第4期3-9,共7页
We propose a built-in fault-tolerant geometric operation to realize fast remote entanglement between superconducting qubits anchored to a 15 m K plate and Rydberg-atom qubits trapped near a 1 K plate via thermal coupl... We propose a built-in fault-tolerant geometric operation to realize fast remote entanglement between superconducting qubits anchored to a 15 m K plate and Rydberg-atom qubits trapped near a 1 K plate via thermal coupled cavities. We show that this operation is robust against the detrimental effects of the thermal mode states and fluctuations in the control parameters. The operation can generate a high-fidelity entanglement between superconducting and atomic qubits under realistic experimental parameters, comparable to the results of the existing methods using auxiliary cooling systems. The scheme proposed here will promote the development of quantum network and distributed superconducting quantum computation. 展开更多
关键词 interfacing thermal-photon resistance geometric operation hybrid quantum network
原文传递
Neural functional rehabilitation:Exploring neuromuscular reconstruction technology advancements and challenges
6
作者 Chunxiao Tang Ping Wang +3 位作者 Zhonghua Li Shizhen Zhong Lin Yang Guanglin Li 《Neural Regeneration Research》 2026年第1期173-186,共14页
Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic i... Neural machine interface technology is a pioneering approach that aims to address the complex challenges of neurological dysfunctions and disabilities resulting from conditions such as congenital disorders,traumatic injuries,and neurological diseases.Neural machine interface technology establishes direct connections with the brain or peripheral nervous system to restore impaired motor,sensory,and cognitive functions,significantly improving patients'quality of life.This review analyzes the chronological development and integration of various neural machine interface technologies,including regenerative peripheral nerve interfaces,targeted muscle and sensory reinnervation,agonist–antagonist myoneural interfaces,and brain–machine interfaces.Recent advancements in flexible electronics and bioengineering have led to the development of more biocompatible and highresolution electrodes,which enhance the performance and longevity of neural machine interface technology.However,significant challenges remain,such as signal interference,fibrous tissue encapsulation,and the need for precise anatomical localization and reconstruction.The integration of advanced signal processing algorithms,particularly those utilizing artificial intelligence and machine learning,has the potential to improve the accuracy and reliability of neural signal interpretation,which will make neural machine interface technologies more intuitive and effective.These technologies have broad,impactful clinical applications,ranging from motor restoration and sensory feedback in prosthetics to neurological disorder treatment and neurorehabilitation.This review suggests that multidisciplinary collaboration will play a critical role in advancing neural machine interface technologies by combining insights from biomedical engineering,clinical surgery,and neuroengineering to develop more sophisticated and reliable interfaces.By addressing existing limitations and exploring new technological frontiers,neural machine interface technologies have the potential to revolutionize neuroprosthetics and neurorehabilitation,promising enhanced mobility,independence,and quality of life for individuals with neurological impairments.By leveraging detailed anatomical knowledge and integrating cutting-edge neuroengineering principles,researchers and clinicians can push the boundaries of what is possible and create increasingly sophisticated and long-lasting prosthetic devices that provide sustained benefits for users. 展开更多
关键词 agonist–antagonist myoneural interface biocompatibility brain–machine interface clinical anatomy neural machine interface NEUROPROSTHETICS peripheral nerve interface PROPRIOCEPTION targeted muscle reinnervation targeted sensory reinnervation
在线阅读 下载PDF
Brain-computer interfaces re-shape functional neurosurgery
7
作者 Thomas Kinfe Steffen Brenner Nima Etminan 《Neural Regeneration Research》 2026年第3期1122-1123,共2页
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography... Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019). 展开更多
关键词 microelectrode arraysthe brain computer interfaces ELECTROENCEPHALOGRAPHY ELECTROCORTICOGRAPHY interface central peripheral nervous system non invasive neurotechnologies functional neurosurgery microelectrode arrays
暂未订购
Gas‑Phase Construction of Compact Capping Layers for High‑Performance Halide Perovskite X‑Ray Detectors
8
作者 Bin Zhang Chuanyun Hao +17 位作者 Shoufeng Zhang Bin Xue Xiangfan Xie Shengqiao Zeng Bin Yang Fang Xu Hui Li Xin’an Zhang Zhang Qu Kai‑Hang Ye Guangda Niu Wallace CHChoy Kezhou Fan Kam Sing Wong Lei Yan Xingzhu Wang Shuang Xiao Cangtao Zhou 《Nano-Micro Letters》 2026年第3期388-405,共18页
Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract in... Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors. 展开更多
关键词 Halide perovskite Ion migration Interface HETEROSTRUCTURE X-ray detection
在线阅读 下载PDF
Recent advances and perspectives in interface engineering of high-performance alloys
9
作者 Yuan Zhu Tongbo Jiang +7 位作者 Honghui Wu Faguo Hou Xiaoye Zhou Feiyang Wang Shuize Wang Junheng Gao Haitao Zhao Chaolei Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期53-67,共15页
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t... High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys. 展开更多
关键词 interface engineering crystallographic boundary chemical boundary alloy design
在线阅读 下载PDF
Influence of interface shape on microstructure and mechanical properties of Mg/Al composite plates fabricated by hot-pressing
10
作者 Shi-jun TAN Bo SONG +6 位作者 Hao-hua XU Ting-ting LIU Jia SHE Sheng-feng GUO Xian-hua CHEN Kai-hong ZHENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2026年第1期124-143,共20页
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu... A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction. 展开更多
关键词 Mg/Al composite plate interface shape MICROSTRUCTURE mechanical properties TEXTURE
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
11
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2D materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
A Reconfigurable Omnidirectional Triboelectric Whisker Sensor Array for Versatile Human–Machine–Environment Interaction
12
作者 Weichen Wang Jiaqi Zhu +9 位作者 Hongfa Zhao Fei Yao Yuzhu Zhang Xiankuan Qian Mingrui Shu Zhigang Wu Minyi Xu Hongya Geng Wenbo Ding Juntian Qu 《Nano-Micro Letters》 2026年第3期121-140,共20页
Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations... Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments. 展开更多
关键词 Reconfigurable sensor array Interaction interface Tactile perception Omnidirectional sensor Reversible anchoring
在线阅读 下载PDF
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
13
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Microwave-assisted synthesis of CQDs/ZnO hollow microspheres for complete NO_(x) oxidation under visible light
14
作者 Yan Liua Xianjin Shi +4 位作者 Long Cui Pengge Wang Zhenbo Zhang Li Chen Zhenyu Wang 《Journal of Environmental Sciences》 2026年第1期1-9,共9页
The development of ZnO-based composites with high charge separation and effective inhibition of toxic by-products is admirable for effective photocatalysis of nitrogen oxides(NO_(x))oxidation.In this study,carbon quan... The development of ZnO-based composites with high charge separation and effective inhibition of toxic by-products is admirable for effective photocatalysis of nitrogen oxides(NO_(x))oxidation.In this study,carbon quan-tum dots(CQDs)/ZnO hollow microspheres,synthesized through a rapid microwave-assisted method,achievedover a 30-fold higher NO_(x) removal efficiency compared to ZnO,with complete inhibition of NO_(2) by-products andgood durability.The enhanced photocatalytic activity was ascribed to the unique role of CQDs,as revealed byin-situ photoelectric techniques.Results demonstrated that the electron directional migration from ZnO to CQDsat the composite interface accounts for the enhanced charge separation.Active free radicals for NO_(x) oxidationwere identified,and in-situ diffuse reflectance infrared Fourier transform spectroscopy analysis elucidated theconversion pathways of NO_(x) oxidation under visible light irradiation.This work sheds light on the mechanismsof electron transfer and charge separation at the composite interface,offering guidance for designing superiorZnO-based photocatalysts for complete NO_(x) removal. 展开更多
关键词 CQDs/ZnO Hollow microspheresComposite interface Electron transfer Charge separation NO_(x)remova
原文传递
Effect and mechanism of Ti−O solid solution layer on interfacial bonding strength of cold roll bonded titanium/stainless steel laminated composite plate
15
作者 Zhi-yan YANG Xue-feng LIU +1 位作者 Hong-ting CHEN Xin MA 《Transactions of Nonferrous Metals Society of China》 2026年第1期171-182,共12页
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str... Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective. 展开更多
关键词 titanium/stainless steel laminated composite plate Ti−O solid solution hardened layer interlocking interface formation mechanism interfacial bonding strength
在线阅读 下载PDF
Bioinspired nanomaterials for wearable sensing and human–machine interfacing 被引量:3
16
作者 Vishesh Kashyap Junyi Yin +1 位作者 Xiao Xiao Jun Chen 《Nano Research》 SCIE EI CSCD 2024年第2期445-461,共17页
The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties li... The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry. 展开更多
关键词 bioinspired nanomaterials human–machine interface wearable sensors wearable bioelectronics
原文传递
Alloy/layer double hydroxide interphasic synergy via nano-heterointerfacing for highly reversible CO_(2)redox reaction in Li-CO_(2)batteries 被引量:1
17
作者 Tianzhen Jian Wenqing Ma +5 位作者 Jiagang Hou Jianping Ma Xianhong Li Haiyang Gao Caixia Xu Hong Liu 《Nano Research》 SCIE EI CSCD 2024年第6期5206-5215,共10页
Li-CO_(2)batteries are among the most intriguing techniques for balancing the carbon cycle,but are challenged by the annoyed thermodynamic barrier of the Li_(2)CO_(3)decomposition reaction.Herein,we demonstrate the el... Li-CO_(2)batteries are among the most intriguing techniques for balancing the carbon cycle,but are challenged by the annoyed thermodynamic barrier of the Li_(2)CO_(3)decomposition reaction.Herein,we demonstrate the electrocatalytic performances of two-dimensional(2D)CoAl-layer double hydroxide(LDH)nanosheets can be significantly improved by trans-dimensional crosslinking with three-dimensional(3D)multilevel nanoporous(MP)-RuCoAl alloy(MP-RuCoAl alloy⊥CoAl-LDH).The MP-RuCoAl alloy⊥CoAl-LDH with multiscale pore channels and abundant nano-heterointerface is directly prepared by controllable etching Al from a Ru-Co-Al master alloy along with simultaneous partial oxidization of Al and Co atoms.The MP-RuCoAl is composed of various intermetallic compounds and Ru with abundant grain boundaries,and forms numerous heterointerface with 2D CoAl-LDH nanosheets.The multiscale porous metallic network benefits mass and electron transportation as well as discharge product storage and enables a rich multiphase reaction interface.In situ differential electrochemical mass spectrometry shows that the mass-to-charge ratio in the charging process is~0.733 which is consistent with the theoretical value of 3/4,stating that the reversible co-decomposition of Li_(2)CO_(3)and C can be achieved with the MP-RuCoAl alloy⊥CoAl-LDH.The Ketjen black(KB)/MP-RuCoAl⊥CoAl-LDH battery demonstrates a high cyclability for over 2270 h(227 cycles)with a lower voltage gap stabilized at~1.3 V at 200 mA·g^(−1).Our findings here provide useful guidelines for developing high efficiency transition metal based electrocatalysts by coupling with conductive porous substrate for impelling the development of practical Li-CO_(2)battery systems. 展开更多
关键词 heterojunction interface NANOPOROUS Li-CO_(2)battery DEALLOYING
原文传递
Topological quantum memory interfacing atomic and superconducting qubits
18
作者 Zheng Yuan Xue Zhang Qi Yin +2 位作者 Yan Chen Zi Dan Wang Shi Liang Zhu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第6期35-40,共6页
We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-dimensional optical lattice.In particular, by introducing a quantum opto-electro-mechanical interface, we are able ... We propose a scheme to manipulate a topological spin qubit which is realized with cold atoms in a one-dimensional optical lattice.In particular, by introducing a quantum opto-electro-mechanical interface, we are able to first transfer a superconducting qubit state to an atomic qubit state and then to store it into the topological spin qubit. In this way, an efficient topological quantum memory could be constructed for the superconducting qubit. Therefore, we can consolidate the advantages of both the noise resistance of the topological qubits and the scalability of the superconducting qubits in this hybrid architecture. 展开更多
关键词 topological quantum memory opto-electro-mechanics quantum interface
原文传递
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
19
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 Laser processing Conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部