期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Monitoring the Interfacial Polymerization and Membrane Fouling of Selective Layer with Boronate Ester Linkages via Aggregation-induced Emission
1
作者 Meng-Yao Zhao Xin-Zhao Luo +4 位作者 Die Li Ya-Qi Dong Qian Wang Xiao-Ling Xu Qiang Zhang 《Chinese Journal of Polymer Science》 2025年第9期1505-1515,I0006,共12页
It is important to understand the evolution of the matter on the polymer membrane surface.The in situ and real-time monitoring of the membrane surface will not only favor the investigation of selective layer formation... It is important to understand the evolution of the matter on the polymer membrane surface.The in situ and real-time monitoring of the membrane surface will not only favor the investigation of selective layer formation but can also track the fouling process during operation.Herein,an aggregation-induced emission(AIE)-active polymer membrane was prepared by the interfacial polymerization of a cyclodextrin-based glycocluster(CD@Glucose)and a tetraphenylethylene derivative modified with boronic acid groups(TPEDB)on the surface of a polyacrylonitrile(PAN)ultrafiltration membrane.This interfacial polymerization method can be stacked layer-by-layer to regulate the hydrophilicity and pore structure of the membrane.With the increase in the number of polymer layers,the separation and antifouling properties of the membrane gradually improved.Owing to the AIE property of the crosslinking agent TPEDB,the occurrence of interfacial polymerization and the degree of fouling during membrane operation can be monitored by the fluorescence distribution and intensity.With the aggravation of membrane fouling,the fluorescence decreased gradually,but recovered after cleaning.Therefore,this AIE effect can be used for real-time monitoring of interfacial polymerization as well as membrane fouling. 展开更多
关键词 Aggregation-induced emission interfacial polymerization Selective layer Boronate ester Membrane fouling monitoring
原文传递
Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization 被引量:5
2
作者 Meidi Wang Weixiong Guo +1 位作者 Zhongyi Jiang Fusheng Pan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1039-1045,共7页
Polyamide(PA)-based thin-film composite membranes exhibit enormous potential in water purification,owing to their facile fabrication,decent performance and desirable stability.However,the thick PA active layer with hi... Polyamide(PA)-based thin-film composite membranes exhibit enormous potential in water purification,owing to their facile fabrication,decent performance and desirable stability.However,the thick PA active layer with high transport resistance from the conventional interfacial polymerization hampers their applications.The controllable fabrication of a thin PA active layer is essential for high separation efficiency but still challenging.Herein,a covalent organic framework TpPa-1 interlayer was firstly deposited on a polyethersulfone(PES)substrate to reduce the thickness of PA active layer in interfacial polymerization.The abundant pores of TpPa-1 increase the local concentration of amine monomers by adsorbing piperazine molecules,while hydrogen bonds between hydrophilic groups of TpPa-1 and piperazine molecules slow down their diffusion rate.Arising from those synergetic effects,the PA active layer is effectively reduced from 200 nm to 120 nm.By optimizing TpPa-1 interlayer and PA active layer,the water flux of resultant membranes can reach 171.35 L·m^-2·h^-1·MPa^-1,which increased by 125.4%compared with PA/PES membranes,while the rejection rates of sodium sulfate and dyes solution remained more than 90%and 99%,respectively.Our strategy may stimulate rational design of ultrathin PA-based nanofiltration membranes with high performances. 展开更多
关键词 Thin film composite membranes interfacial polymerization Covalent organic frameworks interlayer NANOFILTRATION
在线阅读 下载PDF
Preparation of Composite Charge-mosaic Hollow Fiber Membrane by Interfacial Polymerization 被引量:5
3
作者 HaoQinZHANG JinDunLIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第5期609-610,共2页
The preparation of composite charge-mosaic membrane included spinning of hollow fiber as the supporting membrane, preparing a selective layer on the inside surface of the fiber by interfacial polymerization. The char... The preparation of composite charge-mosaic membrane included spinning of hollow fiber as the supporting membrane, preparing a selective layer on the inside surface of the fiber by interfacial polymerization. The charge-mosaic membranes show a high salt permeability while retaining sucrose. The charge-mosaic membrane can be effectively used to separate multivalent salts with organic matter of molecular weight great than 300 g/mol in industry. 展开更多
关键词 Charge-mosaic membrane interfacial polymerization composite membrane.
在线阅读 下载PDF
CO2/CH4 separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization 被引量:4
4
作者 Eun-Sung Jo Xinghai An +3 位作者 Pravin G.Ingole Won-Kil Choi Yeong-Sung Park Hyung-Keun Lee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期278-287,共10页
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve... Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups. 展开更多
关键词 Thin-film composite hollow fiber membrane interfacial polymerization CHMA/TMC CO2/CH4 separation
在线阅读 下载PDF
Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO_(2) separation 被引量:3
5
作者 Haoqing Xu Wenyan Feng +4 位作者 Menglong Sheng Ye Yuan Bo Wang Jixiao Wang Zhi Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期152-160,共9页
Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in... Thin film composite(TFC)membranes with nanofillers additives for CO_(2)separation show promising applications in energy and environment-related fields.However,the poor compatibility between nanofillers and polymers in TFC membranes is the main problem.In this work,covalent organic frameworks(COFs,TpPa-1)with rich ANHA groups were incorporated into polyamide(PA)segment via in situ interfacial polymerization to prepare defect-free TFC membranes for CO_(2)/N_(2)separation.The formed covalent bonds between TpPa-1 and PA strengthen the interaction between nanofillers and polymers,thereby enhancing compatibility.Besides,the incorporated COFs disturb the rigid structure of the PA layer,and provide fast CO_(2)transfer channels.The incorporated COFs also increase the content of effective carriers,which enhances the CO_(2)facilitated transport.Consequently,in CO_(2)/N_(2)mixed gas separation test,the optimal TFC(TpPa_(0.025)-PIP-TMC/m PSf)membrane exhibits high CO_(2)permeance of 854 GPU and high CO_(2)/N_(2)selectivity of 148 at 0.15 MPa,CO_(2)permeance of 456 GPU(gas permeation unit)and CO_(2)/N_(2)selectivity of 92 at 0.5 MPa.In addition,the Tp Pa_(0.025)-PIP-TMC/m PSf membrane also achieves high permselectivty in CO_(2)/CH_(4)mixed gas separation test.Finally,the optimal TFC membrane showes good stability in the simulated flue gas test,revealing the application potential for CO_(2)capture from flue gas. 展开更多
关键词 Covalent organic frameworks CO_(2)/N_(2)separation In situ interfacial polymerization Compatibility Covalent bonds
在线阅读 下载PDF
Epoxy microcapsules for high-performance self-healing materials using a novel method via integrating electrospraying and interfacial polymerization 被引量:2
6
作者 He Zhang Kaibin Xiao +1 位作者 Zhilin Lin Shengyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第17期59-67,共9页
The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amin... The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amine chemistry.Herein,a novel microencapsulation technique based on non-equilibrium droplets via integrating electrospraying and interfacial polymerization(ES-IP)was established to efficiently microencapsulate epoxy monomers.The ES-IP technique,consisting of three continuous steps,i.e.electrospraying to massively generate droplets,enwrapping every single droplet through instant interfacial polymerization,and thickening shell at an elevated temperature,has great flexibility to regulate the microencapsulation process and the microcapsule quality.The fabricated core-shell structured epoxy microcapsules(Ep-MCs)were comprehensively characterized for their properties,showing that they have high cleanness with rare impurities,controllable and tunable size,good thermal stability and tightness,and high effective core fraction.The high-quality Ep-MCs were adopted to formulate a self-healing epoxy based on the microencapsulated epoxy-amine chemistry.The highest healing efficiency,in terms of the recovered mode I fracture toughness,of 110±17%was achieved after being healed at room temperature(~25℃)for 48 h.While the developed ES-IP technique facilitates the microencapsulation technique based on non-equilibrium droplets,the fabricated high-quality Ep-MCs greatly promote the further developments of the practical self-healing materials. 展开更多
关键词 EPOXY MICROCAPSULE ELECTROSPRAYING interfacial polymerization SELF-HEALING
原文传递
Preparation of Thin Film Composite Nanofiltration Membrane by Interfacial Polymerization with 3,5-Diaminobenzoylpiperazine and Trimesoyl Chloride 被引量:2
7
作者 王丽红 李德玲 +2 位作者 程丽华 张林 陈欢林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期262-266,共5页
A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3... A new aromatic diamine,3,5-diaminobenzoylpiperazine (3,5-DABP),was synthesized from 3,5-diaminobenzoic acid and 1-formyl piperazine.The structure of 3,5-DABP was identified by FT-IR spectra and 1H NMR spectra.With 3,5-DABP as aqueous monomer and trimesoyl chloride (TMC) as organic monomer,thin film composite (TFC) nanofiltration membranes were prepared by interfacial polymerization technology.The salt rejection order of these TFC membranes is Na2SO4MgSO4MgCl2NaCl.This sequence indicates that the membranes are negatively charged. 展开更多
关键词 thin film composite membrane 3 5-diaminobenzoylpiperazine trimesoyl chloride interfacial polymerization
在线阅读 下载PDF
Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization
8
作者 Jing Dou Shuo Han +3 位作者 Saisai Lin Zhikan Yao Lian Hou Lin Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期194-202,共9页
Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,i... Enhancing the water permeation while maintaining high salt rejection of existing reverse osmosis(RO)membranes remains a considerable challenge.Herein,we proposed to introduce polymer of intrinsic microporosity,PIM-1,into the selective layer of reverse osmosis membranes to break the trade-off effect between permeability and selectivity.A water-soluble a-LPIM-1 of low-molecular-weight and hydroxyl terminals was synthesized.These designed characteristics endowed it with high solubility and reactivity.Then it was mixed with m-phenylenediamine and together served as aqueous monomer to react with organic monomer of trimesoyl chloride via interfacial polymerization.The characterization results exhibited that more“nodule”rather than“leaf”structure formed on RO membrane surface,which indicated that the introduction of the high free-volume of a-LPIM-1 with three dimensional twisted and folded structure into the selective layer effectively caused the frustrated packing between polymer chains.In virtue of this effect,even with reduced surface roughness and unchanged layer thickness,the water permeability of prepared reverse osmosis membranes increased 2.1 times to 62.8 L·m^(-2)·h^(-1) with acceptable Na Cl rejection of 97.6%.This attempt developed a new strategy to break the trade-off effect faced by traditional polyamide reverse osmosis membranes. 展开更多
关键词 PIM-1 Intrinsic microporosity Reverse osmosis interfacial polymerization Trade-off
在线阅读 下载PDF
Recent progress in the interfacial polymerization process for CO_(2) separation membrane fabrication
9
作者 Zhijie Shang Qiangqiang Song +9 位作者 Bin Han Jing Ma Dongyang Li Cancan Zhang Xin Li Jinghe Yang Junyong Zhu Wenpeng Li Jing Wang Yatao Zhang 《Frontiers of Chemical Science and Engineering》 2025年第1期67-87,共21页
Nowadays,global warming caused by the increasing levels of CO_(2) has become a serious environmental problem.Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy op... Nowadays,global warming caused by the increasing levels of CO_(2) has become a serious environmental problem.Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation,energy-efficientness and high efficiency.Interfacial polymerization process,as a facile and well-established technique for preparing membranes with a thin selective layer,has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain.To push forward such an interfacial polymerization process in the research of CO_(2) separation membranes,herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO_(2) separation.First,a comprehensive and critical review of the progress in the monomers,nanoparticles and interfacial polymerization process optimization for preparing CO_(2) separation membrane is presented.In addition,the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO_(2) separation are outlined.Finally,the possible challenges and development prospects of CO_(2) separation membranes by interfacial polymerization process are proposed.It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO_(2) separation,thereby fostering its development. 展开更多
关键词 interfacial polymerization CO_(2)separation MONOMER NANOPARTICLE
原文传递
Emulsion interfacial polymerization of anticancer peptides:fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity 被引量:3
10
作者 Jinpeng Yang Hua Wang +3 位作者 Zihe Yin Shuai Zhang Jiang-Fei Xu Xi Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2022年第11期2252-2259,共8页
The development of drug delivery systems with high drug-loading efficiency, kinetic stability against dilution, as well as enhanced anticancer activity is of crucial importance to the fields of self-assembly and nanom... The development of drug delivery systems with high drug-loading efficiency, kinetic stability against dilution, as well as enhanced anticancer activity is of crucial importance to the fields of self-assembly and nanomedicine. Herein, we propose a strategy where the anticancer peptide acts as water-soluble monomer to directly participate in emulsion interfacial polymerization for fabricating polypeptide nanospheres. The constructed polypeptide nanospheres hold a high drug loading efficiency of 77%, and can be stably dispersed in highly diluted aqueous solutions. The acid-labile amide linkage in polypeptide nanospheres can be hydrolyzed in tumor acidic environments, thus releasing anticancer peptides selectively. The polypeptide nanospheres achieve significantly enhanced anticancer activity against HCT116 cells in vitro and in vivo through improved mitochondrial and membrane disruption. In addition, its side effects on normal cells can be reduced significantly. It is highly anticipated that more kinds of anticancer drug candidates or anticancer drugs can be applied to fabricate polymeric nanomedicines with improved anticancer activity through this strategy. 展开更多
关键词 emulsion interfacial polymerization drug delivery anticancer peptide self-assembly acidity-responsive
原文传递
Functional Thin Films:From Interfacial Preparation to Applications
11
作者 Yan Luo Xiaoyan Liu Yu Fang 《Accounts of Materials Research》 2025年第5期600-614,共15页
CONSPECTUS:Functional thin films prepared through interfacial polymerization(IP)have garnered significant attention due to their unique structural characteristics and wide-ranging application potential.These films are... CONSPECTUS:Functional thin films prepared through interfacial polymerization(IP)have garnered significant attention due to their unique structural characteristics and wide-ranging application potential.These films are typically fabricated at air-liquid or liquid-liquid interfaces,which create distinctive environments conducive to polymerization and thin film formation.In the air-liquid interfacial polymerization(ALIP)process,reactive monomers self-assemble at the interface prior to polycondensation,allowing for the confined growth of two-dimensional materials.By carefully adjusting the monomer concentration,building block structure,and reaction time,it is possible to produce large-area,freestanding,defect-free thin films with a tunable thickness and porosity.These thin films exhibit strong adhesion,flexibility,and geometric continuity,making them particularly suitable for advanced applications in separation technologies,soft optics,catalysis,and environmental protection.Liquid-liquid interfacial polymerization(LLIP)further expands the range of building blocks available for thin film preparation.The interface between two immiscible liquids provides an ideal platform for reactive molecules residing in different phases to interact,facilitating the growth of large-area,uniform,free-standing films with extensive porosity.The properties can be finely controlled by varying the building block structure,monomer concentration,and reaction time,highlighting their potential for scalable production of functional thin films.The IP method effectively addresses challenges in thin film production such as substrate effects and mass transfer limitations,thereby enhancing the sensitivity and reliability of high-performance films.These advantages underscore the pivotal role of IP in the development of multifunctional thin films,offering distinct benefits over conventional top-down or bottom-up synthesis methods.This Account presents recent research advancements achieved by our group in developing functional thin films via ALIP and LLIP.We first explore the preparation of various thin films with specific properties through Schiff base and Katritzky reactions.We then discuss their applications in fluorescence and colorimetric sensing,adsorption,separation,catalysis,soft actuators,flexible surfaceenhanced Raman scattering(SERS)substrates,and nonlinear optics(NLO).Finally,we address the current challenges in developing interfacially confined films and propose future research directions aimed at advancing the innovation of thin films with unique physicochemical properties. 展开更多
关键词 liquid liquid interfacial polymerization air liquid interfacial polymerization schiff base reaction thin film katritzky reaction interfacial polymerization ip interfacial polymerization alip processreactive monomers interfacial polymerization
原文传递
Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions
12
作者 Yu-Jie Shang Bian-Bian Guo +2 位作者 Hao-Nan Li Yong-Jin Li Jing Yang 《Chinese Journal of Polymer Science》 2025年第5期819-827,共9页
The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilu... The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature,in which semi-permeable membranes play a vital role in determining the recovery efficiency.Herein,we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process.The resulting FO membrane shows a compact polyamide layer with a thickness of 30-200 nm,guranteeing a high selectivity to ILs and water.Meanwhile,the nanofibrous substrate with large and interconnect pores as well as low tortuosity,providing mechanical and permeable support for the composite membranes.IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process.First,the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution,resulting in an enhancement in driving force of water osmosis and IL enrichment.Moreover,alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer via electrostatic and alkyl-πinteractions.Meanwhile,such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion.Therefore,imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss.Remarkably,the final concentration of IL with longest alkyl length reaches the highest(6.4 mol·L^(-1)).This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions. 展开更多
关键词 Thin-film composite membrane Forward osmosis Ionic liquids interfacial polymerization Electrospun nanofiber
原文传递
Aqueous Two-Phase Interfacial Assembly of COF Membranes for Water Desalination 被引量:7
13
作者 Hongjian Wang Jiashuai Zhao +6 位作者 Yang Li Yu Cao Ziting Zhu Meidi Wang Runnan Zhang Fusheng Pan Zhongyi Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期491-504,共14页
Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region,affording unique confined space for membrane assembly.Here,for the first time,an aqueous two-phase interfacial assembly ... Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region,affording unique confined space for membrane assembly.Here,for the first time,an aqueous two-phase interfacial assembly method is proposed to fabricate covalent organic framework(COF)membranes.The aqueous solution containing polyethylene glycol and dextran undergoes segregated phase separation into two water-rich phases.By respectively distributing aldehyde and amine monomers into two aqueous phases,a series of COF membranes are fabricated at water-water interface.The resultant membranes exhibit high NaCl rejection of 93.0-93.6% and water permeance reaching 1.7-3.7 L m^(−2) h^(−1) bar^(−1),superior to most water desalination membranes.Interestingly,the interfacial tension is found to have pronounced effect on membrane structures.The appropriate interfacial tension range(0.1-1.0 mN m^(−1))leads to the tight and intact COF membranes.Furthermore,the method is extended to the fabrication of other COF and metal-organic polymer membranes.This work is the first exploitation of fabricating membranes in all-aqueous system,confering a green and generic method for advanced membrane manufacturing. 展开更多
关键词 Covalent organic framework membranes Aqueous two-phase interfacial polymerization Molecular separation Water desalination
在线阅读 下载PDF
Electrochemical performance of interfacially polymerized polyaniline nanofibres as electrode materials for non-aqueous redox supercapacitors 被引量:2
14
作者 李劼 方静 +3 位作者 崔沐 卢海 张治安 赖延清 《Journal of Central South University》 SCIE EI CAS 2011年第1期78-82,共5页
H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiP... H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability. 展开更多
关键词 polyaniline nanofibre redox supercapacitor interfacial polymerization lithium salt doping
在线阅读 下载PDF
Interfacial synthesis and properties of L-lysine-derived optically active poly(ester-imide)s 被引量:1
15
作者 Saeed Zahmatkesh Ali Reza Alborzi +1 位作者 Javad Sadeghi Karim Zare 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第5期607-610,共4页
L-Lysine hydrochloride was transformed to ethyl L-lysine dihydrochloride.This salt was reacted with trimellitic anhydride to yield the corresponding diacid(1).Intertacial polycondensation results novel poly(ester-i... L-Lysine hydrochloride was transformed to ethyl L-lysine dihydrochloride.This salt was reacted with trimellitic anhydride to yield the corresponding diacid(1).Intertacial polycondensation results novel poly(ester-imide)s(PEI_(a-i)).These polymers have inherent viscosities in the range of 0.23-0.47 dl g^(-1),display optical activity,and are readily soluble in polar aprotic solvents.They start to decompose(T_(10%)) above 350℃and display glass-transition temperatures at 100.42-172.81℃.All of the above polymers were fully characterized by UV,FT-IR and ~1H NMR spectroscopy,elemental analysis,TGA,DSC,inherent viscosity measurement and specific rotation. 展开更多
关键词 CHIRAL Optically active L-LYSINE Poly(ester-imide) interfacial polymerization
原文传递
Preparation of Poly-α-Olefin Microcapsule Particles Coated with Polyurethane as a Drag Reducer Based on Interface Polymerization
16
作者 Li Chenhao Lu Yong +6 位作者 Li Hao Chen Yue Meng Yeqiao Zhou Pengfei Xu Dan Wang Yiran Zhang Xiaolai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期101-112,共12页
The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall ma... The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall materials were synthesized using two reaction monomers,and a poly-α-olefin/PU drag reducer microcapsule was prepared based on interface polymerization.The structure,morphology,thermal stability,compressive strength,and drag reduction performance of the microcapsules were characterized and compared.The results showed that a non-bonding interaction induced the adsorption of the PU coating material,poly-α-olefin and PU then fused at the interface,and the PU coating material was embedded into the inner grooves of poly-α-olefin in the form of a local mosaic,thereby forming a stable core–shell structure.The morphological characterization indicated that PU and poly-α-olefin could form microcapsule structures.The thermal decomposition temperature of the microcapsule was dependent on the type of capsule wall material.The microcapsule structure had a slight effect on poly-α-olefin drag reduction.The system enabled poly-α-olefin to exist in powdered particles through microcapsulation,and had a good dispersion effect that facilitated storage and transport processes.The method effectively inhibited the accumulation and bonding of poly-α-olefin at room temperature. 展开更多
关键词 drag reducer poly-α-olefin POLYURETHANE microcapsules particles interfacial polymerization
在线阅读 下载PDF
Thickness insensitive cathode interfacial materials via conjugated backbone ion polymerization for efficient organic solar cells
17
作者 Yi-Guo Qin Wen-Cai Wang +11 位作者 Wen-Jing Sun Ya-Ting Wang Shijie Cheng Shun-Da Wu Sheng-Min Gan Zhan Huang Jia Sun Qiu-Tong Shi Yong Huo Lingxian Meng Yamin Zhang Hao-Li Zhang 《Science China Materials》 2025年第5期1401-1407,共7页
The cathode interfacial layer (CIL) in organicsolar cells (OSCs) is crucial for the transport and collection ofcharge carriers. However, many cathode interfacial materials(CIMs) are unsuitable for printing manufacturi... The cathode interfacial layer (CIL) in organicsolar cells (OSCs) is crucial for the transport and collection ofcharge carriers. However, many cathode interfacial materials(CIMs) are unsuitable for printing manufacturing due to theirsensitivity to thickness. To tackle this issue, researchers havedeveloped a series of CIMs with n-type conjugated frame-works, particularly the naphthalene diimide (NDI) unit, owingto its high electron mobility and complementary absorptionwith commonly used active layers. Despite this, individualNDI molecules have a strong tendency to form large crystallinedomains, which can lead to interfacial defects in CILs. In thiswork, a different approach from other NDI-based CIMs wasadopted by substituting amino polar groups at the core posi-tion of NDI and polymerizing them into ionene-type CIMs.We designed and synthesized three self-doped polymer CIMsnamed PN-Pi, PN-Pe and PN-Eh. Among them, PN-Pi notablyreduces the work function of the Ag electrode, aligns inter-facial energies appropriately, smooths the active layer film andsuppresses carrier injection. This results in an impressivepower conversion efficiency (PCE) of 18.33% in the PM6:L8-BO system and maintains 90.4% PCE even at 127 nm thick-ness, ranking among the top film-thickness tolerance in theOSC field. This work demonstrates that combining conjugatedbackbone substitution with ionic polymerization is a promis-ing strategy for designing high-performance CIMs for OSCs. 展开更多
关键词 organic solar cells polymer cathode interfacial materials film-thickness tolerance
原文传递
Ultrathin organic solvent nanofiltration membrane with polydopamine-HKUST-1 interlayer for organic solvent separation
18
作者 Haike Li Xindong Li +5 位作者 Guozai Ouyang Lijinhong Huang Lang Li Wenhao Li Wanfu Huang Duokun Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第7期182-193,共12页
Polydopamine(PDA)and metal-organic skeleton HKUST-1 were co-deposited on the base membrane of hexamethylenediamine(HDA)-crosslinked polyetherimide(PEI)ultrafiltration membrane as the interlayer,and high-throughput org... Polydopamine(PDA)and metal-organic skeleton HKUST-1 were co-deposited on the base membrane of hexamethylenediamine(HDA)-crosslinked polyetherimide(PEI)ultrafiltration membrane as the interlayer,and high-throughput organic solvent nanofiltration membrane(OSN)was prepared by interfacial polymerization and solvent activation reaction.The polyamide(PA)layer surface roughness from 28.4 nm in PA/PEI to 78.3 nm in PA/PDA-HKUST-10.6/PEI membrane,reduced the thickness of the separation layer from 79 to 14 nm,and significantly improved the hydrophilic,thermal and mechanical properties.The flux of the PA/PDA-HKUST-10.6/PEI membrane in a 0.1 g/L Congo Red(CR)ethanol solution at 0.6 MPa test pressure reached 21.8 L/(m^(2)·hr)and the rejection of CR was 92.8%.Solvent adsorption test,N,N-dimethylformamide(DMF)immersion experiment,and long-term operation test in ethanol showed that the membranes had high solvent tolerance.The solvent flux test demonstrated that,under the test pressure of 0.6 MPa,the flux of different solvents ranked as follows:methanol(56.9 L/(m^(2)·hr))>DMF(39.6 L/(m^(2)·hr))>ethanol(31.2 L/(m^(2)·hr))>IPA(4.5 L/(m^(2)·hr))>N-hexane(1.9 L/(m^(2)·hr)).The ability of the membranes to retain dyes in IPA/water dyes solution was also evaluated.The flux of the membrane was 30.4 L/(m^(2)·hr)and the rejection of CR was 91.6%when the IPA concentration reached 50%.This OSN membrane-making strategy is economical,environment-friendly and efficient,and has a great application prospect in organic solvent separation systems. 展开更多
关键词 interfacial polymerization Organic solvent nanofiltration INTERLAYER Metal-organic frameworks POLYDOPAMINE
原文传递
Amphiphilicity-driven octaphenyl polyoxyethylenes regulate soft microcapsules flexibility for better foliar adhesion and pesticide utilization
19
作者 Haichao Cao Xuewen Jian +7 位作者 Daxia Zhang Wenzheng Ling Guofu Zhang Yaozhong Zhang Hao Zong Chao Feng Dan Chen Feng Liu 《Advanced Agrochem》 2024年第4期316-327,共12页
Pesticide-loaded flexible carriers that allow for deformation and adhesion on crop leaves is an effective way to improve pesticide utilization.In interfacial polymerization,the addition of octaphenyl polyoxyethylene(O... Pesticide-loaded flexible carriers that allow for deformation and adhesion on crop leaves is an effective way to improve pesticide utilization.In interfacial polymerization,the addition of octaphenyl polyoxyethylene(OP)with different hydrophile lipophilic balances(HLBs)into the oil phase can regulate the flexibility of pyraclostrobinloaded microcapsules(MCs).Due to differences in amphiphilicity and molecular structure,OP redistributed on the oil-water two-phases and oil-water interface.With increasing HLB,the proportion of OP entering the aqueous phase increased.Furthermore,more OP with low HLB remained in the oil phase and occupied the oil-water interface,and these OPs participated in and regulated the interfacial polymerization to increase the thickness,reduce the compactness of the shell,and increase the hydroxyl and ether bond contents in the shell.Therefore,pyraclostrobin-loaded MCs with low HLB(11.5-12.5)OP-7 exhibited flexible deformation,strong foliar adhesion,good scouring resistance,and a high control effect on peanut leaf spot,which the disease severity was 3.67.For high HLB(16),OP-21-prepared MCs with compact shells were safer to zebrafish,which the safety index was 23.81.Using the amphiphilicity of OP molecules to drive their redistribution in an encapsulation system to regulate interfacial polymerization is an effective way to control the structure and performance of pesticideloaded MCs. 展开更多
关键词 interfacial polymerization Deformation ADHESION Flexible microcapsules Pesticide utilization ECOTOXICITY
在线阅读 下载PDF
Synthesis and Characterization of Ethylenediamine Tetraacetic Acid Tetrasodium Salt Loaded in Microcapsules with Slow Release Properties 被引量:8
20
作者 谢志章 陈能场 +5 位作者 刘承帅 周建民 徐胜光 郑煜基 李芳柏 徐燕玲 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第1期149-155,共7页
The microcapsules with cores of ethylenediamine tetraacetic acid tetrasodium salt(Na4-EDTA)and walls of polyurea were synthesized via an interfacial polycondensation reaction with 2,4-tolylene diisocyanate as an oil-s... The microcapsules with cores of ethylenediamine tetraacetic acid tetrasodium salt(Na4-EDTA)and walls of polyurea were synthesized via an interfacial polycondensation reaction with 2,4-tolylene diisocyanate as an oil-soluble monomer and diethyl triamine as a water-soluble monomer.Various manufacturing parameters,including the amount of emulsifier,agitation speed,stirring time and ratios of the wall materials to core materials,were altered to optimize process variables during the synthesis of microcapsules,and the effects of these parameters on the characteristics of the microcapsules were examined.The structure,morphology,mean particle size and size distribution were characterized by optical microscope and scanning electron microscopy(SEM),showing that the mean diameter of optimal microspheres was approximately 6μm,and microcapsules were spherical.In vitro release of Na4-EDTA from these microcapsules was performed in distilled water.Under the optimal preparation conditions, the Na4-EDTA release profiles were biphasic with a burst release followed by a gradual release phase.After an initial burst,a continuous Na4-EDTA release was up to 5-7 days.The optimal synthesis conditions for the microcapsules with stable,good morphology and good controlled-release properties were as follows:emulsifier Span-80 10% (by mass),agitation speed 900 r·min1,stirring time 30 min,and the ratio of the wall materials to core materials 0.15. 展开更多
关键词 Na4-EDTA microcapsules interfacial polymerization controlled release
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部