Traditional distillation(TD)is generally an energy-intensive and inefficient process for separation and purification of liquids in chemical industries.Herein,we developed an interface-enhanced distillation(IED)by empl...Traditional distillation(TD)is generally an energy-intensive and inefficient process for separation and purification of liquids in chemical industries.Herein,we developed an interface-enhanced distillation(IED)by employing a well-arranged membrane of reduced graphene oxide(rGO)sheet arrays embedded with silicon dioxide nanofibres(rGO/SiO2)as the evaporation intermediate layer on the liquid surface.This IED enlarges the evaporation surfaces and weakens the intermolecular forces on the liquid/solid/gas interfaces,realizing the fast and even low temperature fraction collection with less energy consumption.The IED delivers evaporation rates 200%–300%times that of TD,meanwhile having an energy saving of 40%–60%and a time saving of 50%–70%for diverse liquid feeds.In atmospheric IED manner,high boiling point and perishable organics can be collected with high quality at a temperature lower than their boiling points.This IED provides an innovative strategy for highly efficient distillation in chemical industries.展开更多
Recent experimental and theoretical studies of single-layer FeSe film grown on SrTiO_3 have revealed interface enhanced superconductivity, which opens up a pathway to promote the superconducting transition temperature...Recent experimental and theoretical studies of single-layer FeSe film grown on SrTiO_3 have revealed interface enhanced superconductivity, which opens up a pathway to promote the superconducting transition temperature. Here, to investigate the role of SrTiO_3 substrate in epitaxial superconducting film, we grew a conventional superconductor b-Sn(bulk T_c~ 3.72 K) onto SrTiO_3 substrate by molecular beam epitaxy. By employing scanning tunneling microscope and spectroscopic measurements, an enhanced Tcof 8.2 K is found for epitaxial b-Sn islands, deduced by fitting the temperature dependence of the gap values using the BCS formula. The observed interfacial charge injection and enhanced electron–phonon coupling are responsible for this Tcenhancement. Moreover, the critical field of 8.3 T exhibits a tremendous increase due to the suppression of the vortex formation. Therefore, the coexistence of enhanced superconductivity and high critical field of Sn islands demonstrates a feasible and effective route to improve the superconductivity by growing the islands of conventional superconductors on perovskite-type titanium oxide substrates.展开更多
基金This work was supported by the Ministry of Science and Technology of China(2016YFA0200200 and 2017YFB1104300)the National Science Foundation of China(51673026,51433005 and 21805160)+1 种基金NSFC-MAECI(51861135202),NSFC-STINT(21911530143)and Beijing Natural Science Foundation(2152028).Computations were carried out on the“Explorer 100”cluster system of Tsinghua National Laboratory for Information Science and Technology.
文摘Traditional distillation(TD)is generally an energy-intensive and inefficient process for separation and purification of liquids in chemical industries.Herein,we developed an interface-enhanced distillation(IED)by employing a well-arranged membrane of reduced graphene oxide(rGO)sheet arrays embedded with silicon dioxide nanofibres(rGO/SiO2)as the evaporation intermediate layer on the liquid surface.This IED enlarges the evaporation surfaces and weakens the intermolecular forces on the liquid/solid/gas interfaces,realizing the fast and even low temperature fraction collection with less energy consumption.The IED delivers evaporation rates 200%–300%times that of TD,meanwhile having an energy saving of 40%–60%and a time saving of 50%–70%for diverse liquid feeds.In atmospheric IED manner,high boiling point and perishable organics can be collected with high quality at a temperature lower than their boiling points.This IED provides an innovative strategy for highly efficient distillation in chemical industries.
基金the financial support by the National Natural Science Foundation of China(11574095 and 11604106)
文摘Recent experimental and theoretical studies of single-layer FeSe film grown on SrTiO_3 have revealed interface enhanced superconductivity, which opens up a pathway to promote the superconducting transition temperature. Here, to investigate the role of SrTiO_3 substrate in epitaxial superconducting film, we grew a conventional superconductor b-Sn(bulk T_c~ 3.72 K) onto SrTiO_3 substrate by molecular beam epitaxy. By employing scanning tunneling microscope and spectroscopic measurements, an enhanced Tcof 8.2 K is found for epitaxial b-Sn islands, deduced by fitting the temperature dependence of the gap values using the BCS formula. The observed interfacial charge injection and enhanced electron–phonon coupling are responsible for this Tcenhancement. Moreover, the critical field of 8.3 T exhibits a tremendous increase due to the suppression of the vortex formation. Therefore, the coexistence of enhanced superconductivity and high critical field of Sn islands demonstrates a feasible and effective route to improve the superconductivity by growing the islands of conventional superconductors on perovskite-type titanium oxide substrates.