期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
Interface engineering of oxygen-vacancy-rich MgO/Ni@NiAlO enables low-temperature coke-free methane dry reforming
1
作者 Qiuyue Wang Chenyu Yang +5 位作者 Shenggan Zhu Yuansen Zhang Xuan Wang Yongting Li Weiping Ding Xuefeng Guo 《Chinese Journal of Catalysis》 2025年第8期9-20,共12页
In the past decade,dry reforming of methane(DRM)has garnered increasing interest as it converts CH_(4)and CO_(2),two typical greenhouse gases,into synthesis gas(H_(2)and CO)for the production of high-value-added chemi... In the past decade,dry reforming of methane(DRM)has garnered increasing interest as it converts CH_(4)and CO_(2),two typical greenhouse gases,into synthesis gas(H_(2)and CO)for the production of high-value-added chemicals and fuels.Nickel-based DRM catalysts,renowned for their high activity and low cost,however,encounter challenges such as severe deactivation from sintering and carbon deposition.Herein,a surrounded NiO@NiAlO precursor derived from Ni(OH)_(2)nanosheets was modified at both the core and shell interfaces with MgO via wet impregnation.The obtained 0.8MgO^(WI)/Ni@NiAlO catalyst achieved a high CH_(4)reaction rate of~177 mmol gNi^(-1)min^(-1)and remained stable for 50 h at 600℃without coke formation.In sharp contrast,other Mg-doped catalysts(MgO modified the core or shell interfaces)and the catalyst without Mg-doping deactivated within 10 h due to coking or Ni particle sintering.The Ni/MgNiO_(2)interfaces and abundant oxygen vacancies(O_(v))generated by Mg-doping contributed to the outstanding resistance to sintering&coking as well as the superior activity and stability of the 0.8MgO^(WI)/Ni@NiAlO catalyst.In-situ investigation further unveiled the reaction mechanism:the activation of CO_(2)via adsorption on O_(v)generates active oxygen species(O^(*)),which reacts with CH_(x)^(*)intermediates formed by the dissociation of CH_(4)on Ni sites,yielding CO and H_(2).This work not only fabricates coke-free and high-stability Ni-based DRM catalysts via interface engineering but also provides insights and a new strategy for the design of high-efficiency and stable catalysts for DRM. 展开更多
关键词 Dry reforming of methane Ni-based catalyst Coke-free Oxygen vacancy interface engineering
在线阅读 下载PDF
Interface Engineering Toward Surface-Activated Catalysts for Advanced Li-CO_(2)Batteries
2
作者 Yanze Song Bingyi Lu +6 位作者 Zhiwen Min Haotian Qu Yingqi Liu Rui Mao Yanli Chen Yuanmiao Sun Guangmin Zhou 《Carbon Energy》 2025年第5期172-180,共9页
Lithium-carbon dioxide(Li-CO_(2))batteries with high theoretical energy density are regarded as promising energy storage system toward carbon neutrality.However,bidirectional catalysts design for improving the sluggis... Lithium-carbon dioxide(Li-CO_(2))batteries with high theoretical energy density are regarded as promising energy storage system toward carbon neutrality.However,bidirectional catalysts design for improving the sluggish CO_(2)reduction reaction(CO_(2)RR)/CO_(2)evolution reaction(CO_(2)ER)kinetics remains a huge challenge.In this work,an advanced catalyst with fast-interfacial charge transfer was subtly synthesized through element segregation,which significantly improves the electrocatalytic activity for both CO_(2)RR and CO_(2)ER.Theoretical calculations and characterization analysis demonstrate local charge redistribution at the constructed interface,which leads to optimized binding affinity towards reactants and preferred Li_(2)CO_(3)decomposition behavior,enabling excellent catalytic activity during CO_(2)redox.Benefiting from the enhanced charge transfer ability,the designed highly efficient catalyst with dual active centers and large exposed catalytic area can maintain an ultra-small voltage gap of 0.33 V and high energy efficiency of 90.2%.This work provides an attractive strategy to construct robust catalysts by interface engineering,which could inspire further design of superior bidirectional catalysts for Li-CO_(2)batteries. 展开更多
关键词 electronic redistribution interface engineering Li_(2)CO_(3)decomposition Li-CO_(2)battery
在线阅读 下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:6
3
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
在线阅读 下载PDF
Interface engineering of Co_(9)S_(8)/SnS heterostructure as a high-performance anode for lithium/sodium-ion batteries 被引量:3
4
作者 Jia Luo Shi-Li Xiang +5 位作者 Dan-Yang Han An Liu João Cunha Gang-Yong Li Zhao-Hui Hou Hong Yin 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期612-623,共12页
Transition metal sulfide(TMS)anodes exhibit the characteristics of phase stability and high capacity for lithium/sodium-ion batteries(LIBs/SIBs).However,the TMS anodes often suffer from poor electronic conductivity,lo... Transition metal sulfide(TMS)anodes exhibit the characteristics of phase stability and high capacity for lithium/sodium-ion batteries(LIBs/SIBs).However,the TMS anodes often suffer from poor electronic conductivity,low ionic diffusion and large volume expansion during Li/Na-ion intercalation significantly impairing the Li/Na-storage performance.Herein,a long chain heterostructure composed of the Co_(9)S_(8) and SnS are first reported,which can generate rich phase interfaces,and small crystal domains.The unique structure can facilitate the properties of reactivity,conductivity and ionic diffusion.In addition,the heterostructure surface is modified by the N-doped carbon(N-DC@(CoSn)S),successfully improving the structural stability.The synergistic effects of Co_(9)S_(8)/SnS heterostructure and coated carbon layer effectively increase the capacity and cycling stability.The N-DC@(CoSn)S anode delivers enhanced high specific capacities of 820.6 mAh·g^(−1) at 1.0 A·g^(–1) after 500 cycles for LIBs and 339.2 mAh·g^(–1)at 0.5 A·g^(–1) after 1000 cycles for SIBs,respectively.This work is expected to provide a material design idea for preparing LIBs/SIBs with high capacity and long cycling life. 展开更多
关键词 interface engineering Long chain heterostructure High capacity Cycling stability Li Na-ion batteries
原文传递
Interface engineering and impedance matching strategy to develop core@shell urchin-like NiO/Ni@carbon nanotubes nanocomposites for microwave absorption 被引量:1
5
作者 Tianming Jia Yanling Hao +5 位作者 Xiaosi Qi Yongchao Rao Lei Wang Junfei Ding Yunpeng Qu Wei Zhong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期1-12,共12页
It is well recognized that interfacial effect and/or impedance matching play a great impact on microwave absorption.Herein,we proposed a facile strategy to take full advantage of interface engineering and impedance ma... It is well recognized that interfacial effect and/or impedance matching play a great impact on microwave absorption.Herein,we proposed a facile strategy to take full advantage of interface engineering and impedance matching for boosting microwave absorption performance(MAPs).Three-dimensional(3D)hierarchical urchin-like core@shell structured NiO/Ni@CNTs multicomponent nanocomposites(MCNCs)were elaborately constructed and produced in high efficiency through a facile continuous chemical bath deposition,thermal treatment,and catalytic chemical vapor decomposition process.By controlling the pyrolysis time,the NiO/Ni@CNTs urchin-like MCNCs with different lengths and aggregation degrees of CNTs could be selectively synthesized.The obtained results revealed that the enhanced CNT contents provided abundant interfaces and effectively aggrandized their interfacial effects,which resulted in improved polarization loss,conductivity loss,and comprehensive MAPs.Impressively,the interfaces and impedance matching in the designed NiO/Ni@CNTs urchin-like MCNCs could be optimized by regulating the pyrolysis temperature,which further improved the comprehensive MAPs.And the designed NiO/Ni@CNTs urchin-like MCNCs could simultaneously display strong absorption capabilities,broad absorption bandwidths,and thin matching thicknesses.Therefore,our findings not only provided a simple and universal approach to produce core@shell structured magnetic carbon-based urchin-like MCNCs but also presented an interface engineering and impedance matching strategy to develop the tunable,strong absorption,broadband,lightweight high-efficiency microwave absorbers. 展开更多
关键词 Urchin-like geometrical morphology NiO/Ni@CNTs multicomponent NANOCOMPOSITES Core@shell structure interface engineering Microwave absorption
原文传递
Manipulating polarization attenuation in NbS_(2)-NiS_(2)nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands 被引量:1
6
作者 Yiru Fu Yuping Wang +6 位作者 Junye Cheng Yao Li Jing Wang Yongheng Jin Deqing Zhang Guangping Zheng Maosheng Cao 《Nano Materials Science》 CSCD 2024年第6期794-804,共11页
Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of... Homogeneous heterogeneous(heterophase)interfaces regulated with low energy barriers have a fast response to applied electric fields and could provide a unique interfacial polarization,which facilitate the transport of electrons across the substrate.Such regulation on the interfaces is effective in modulating electromagnetic wave absorbing materials.Herein,we construct NbS_(2)–NiS_(2)heterostructures with NiS_(2)nanoparticles uniformly grown in NbS_(2)hollow nanospheres,and such particular structure enhances the interfacial polarization.The strong electron transfer at the interface promotes electron transport throughout the material,which results in less scattering,promotes conduct ion loss and dielectric polarization relaxation,improves dielectric loss,and results in a good impedance matching of the material.Consequently,the absorbing band may be successful tuned.By regulating the amount of NiS_(2),the heterogeneous interface is finely alternated so that the overall wave-absorbing performance is shifted to lower frequencies.With a NiS_(2)content of 15 wt%and an absorber thickness of 1.84 mm,the minimum reflection loss at 14.56 GHz is53.1 dB,and the effective absorption bandwidth is 5.04 GHz;more importantly,the minimum reflection loss in different bands is20 dB,and the microwave energy absorption rate reaches 99%when the thickness is about 1.5–4.5 mm.This work demonstrates the construction of homogeneous heterostructures is effective in improving the electromagnetic absorption properties,providing guideline for the synthesis of highly efficient electromagnetic absorbing materials. 展开更多
关键词 interface engineering Electromagnetic wave absorption HETEROSTRUCTURES Interfacial polarization
在线阅读 下载PDF
Interface engineering of inverted wide-bandgap perovskite solar cells for tandem photovoltaics 被引量:1
7
作者 Yang Yang Fengyuan Li +1 位作者 Ruihao Chen Hongqiang Wang 《Energy Materials and Devices》 2024年第1期36-53,共18页
Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phas... Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phase instability.These issues are primarily owing to the formation of defects,ion migration,and energy level mismatches at the interface of WBG perovskite devices.Meanwhile,inverted PSCs demonstrate superior stability potential and compatibility with tandem devices,making them the most promising application for WBG perovskite materials.Consequently,interface modulation for such devices has become imperative.In this review,from the perspective of applicability in tandem devices,we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices.We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance.Afterward,we presented a comprehensive summary of interface engineering in inverted WBG perovskite(1.60 eV-1.80 eV)solar cells.The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs,thoroughly investigating interface design strategies and outlining promising research directions.Finally,this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs. 展开更多
关键词 wide-bandgap perovskite inverted perovskite solar cells buried interface engineering surface modification
在线阅读 下载PDF
A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution
8
作者 Xin Kang Qiangmin Yu +4 位作者 Tianhao Zhang Shuqi Hu Heming Liu Zhiyuan Zhang Bilu Liu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第1期9-24,共16页
Water electrolysis for green hydrogen production is important for the global carbon neutrality.The industrialization of this technology requires efficient and durable electrocatalysts under high-current-density(HCD)op... Water electrolysis for green hydrogen production is important for the global carbon neutrality.The industrialization of this technology requires efficient and durable electrocatalysts under high-current-density(HCD)operations.However,the insufficient mass and charge transfer at the various interfaces lead to unsatisfactory HCD activity and durability.Interface engineering is important for designing efficient HCD electrocatalysts.In this perspective,we analyze the processes taking place at three interfaces including the catalyst-substrate,catalyst-electrolyte,and catalyst-gas interfaces,and reveal the correlations between interface interactions and the challenges for HCD electrolysis.We then highlight the development of HCD electrocatalysts that focus on interface engineering using the example of transition metal dichalcogenide based catalysts,which have attracted widespread interests in recent years.Finally,we give an outlook on the development of interface engineering for the industrialization of water electrolysis technology. 展开更多
关键词 interface engineering Electrochemistry Hydrogen production High-current-density Transition metal dichalcogenides(TMDCs) Membrane electrode assembly
在线阅读 下载PDF
Reinforcing oxygen electrocatalytic activity via selective dualphase heterointerface engineering for rechargeable Zn-air batteries
9
作者 Chao Cheng Chuang Zhi +9 位作者 Zhong-Ti Sun Yong-Qiang Ming Ting-Ting Xiang Qing-Chao Zhu Zi-Rui Wu Bing Li Yi Li Cheng Jin Yong Cao Juan Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1524-1536,共13页
Dual-phase heterointerface electrocatalysts(DPHE)constructed by oxygen reduction reaction(ORR)-and oxygen evolution reaction(OER)-active elements exhibit excellent bifunctional activity and long-term durability due to... Dual-phase heterointerface electrocatalysts(DPHE)constructed by oxygen reduction reaction(ORR)-and oxygen evolution reaction(OER)-active elements exhibit excellent bifunctional activity and long-term durability due to the abundant interface exposure and synergistic catalytic effect.Herein,low-dimensional N-doped graphene nanoribbons(N-GNRs)coupling with ultrathin CoO nanocomposites(N-GNRs/CoO)were controllably fabricated through a facile two-step approach using synthesized Co(OH)_2 nanosheet as CoO precursor.Density functional theory(DFT)calculations and experimental characterizations prove that the formation of interface between N-GNRs and CoO can induce local charge redistribution,contributing to the improvement of catalytic activity and stability.The optimal N-GNRs/CoO DPHE possesses hierarchically porous architectures and presents outstanding bifunctional activities with a small potential gap of 0.729 V between the potential at 10 mA·cm^(-2)for OER and the halfwave potential for ORR,which outperforms Pt/C+IrO_(2)and the majority of noble-metal-free bifunctional catalysts.Liquid-and solid-state rechargeable Zn-air batteries assembled with N-GNRs/CoO as the cathode also display high peak power density and fantastic cycle stability,superior to that of benchmark Pt/C+IrO_(2)catalyst.It is anticipated to offer significant benefits toward high activity,stability and mechanical flexibility bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. 展开更多
关键词 interface engineering Graphene nanoribbons CoO Bifunctional electrocatalyst Zn-air batteries
原文传递
Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation
10
作者 Lili Wang Ya Yan +11 位作者 Rulin Li Xujie Han Jiahui Li Ting Ran Jialu Li Baichuan Xiong Xiaorong Song Zhaohui Yin Hong Wang Qingjun Zhu Bowen Cheng Zhen Yin 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期514-520,共7页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF)to valuable chemicals is an efficient way to upgrade biomass molecules and replace traditional catalytic synthesis.It is crucial to develop efficient and lo... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF)to valuable chemicals is an efficient way to upgrade biomass molecules and replace traditional catalytic synthesis.It is crucial to develop efficient and low-cost earth-abundant electrocatalysts to enhance catalytic performance of HMF oxidation.Herein,a new type of two-dimensional(2D)hybrid arrays consisting of Ni Fe layered double hydroxides(LDH)nanosheets and bimetallic sulfide(Ni Fe S)is constructed via interface engineering for efficient electrocatalytic oxidation of HMF to 2,5-furandicarboxylic acid(FDCA).The preparation process of 2D Ni Fe LDH/NiFeS with ultrathin heterostructure involves in anchoring a Co-based metal-organic framework(Co MOF)as template onto the carbon cloth(CC)via in-situ growth,formation of NiFe LDH on the surface of Co MOF and subsequent partial sulfidation.The electrocatalyst of Ni Fe LDH/Ni Fe S exhibits outstanding performance towards HMF oxidation,about 98.5%yield for FDCA and 97.2%Faraday efficiency(FE)in the alkaline electrolyte with 10 mmol/L HMF,as well as excellent stability retaining 90.1%FE for FDCA after six cycles test.Moreover,even at an HMF concentration of 100 mmol/L,the yield and FE for FDCA remain high at 83.6%and 93.6%,respectively.These findings highlight that 2D heterostructure containing abundant interfaces between Ni Fe LDH nanosheets and Ni Fe S can enhance the intrinsic activity of LDH and thus promote the oxidation reaction kinetics.Additionally,the synergistic effect of the bimetallic Ni Fe compounds also improved the selectivity of HMF conversion to FDCA.Our present work demonstrates that constructing 2D ultrathin heterostructure of Ni Fe LDH/Ni Fe S is a facile strategy via interface engineering to enhance the intrinsic activity of LDH electrocatalysts,which would open new avenues toward low-cost and advanced 2D nanocatalysts for sustainable energy conversion and electrochemical valorization of biomass derivatives. 展开更多
关键词 Electrocatalytic oxidation interface engineering 2D ultrathin heterostructure Layered double hydroxides 5-HYDROXYMETHYLFURFURAL
原文传递
Enhanced Electrical Properties of Bi_(2−x)Sb_(x)Te_(3) Nanoflake Thin Films Through Interface Engineering
11
作者 Xudong Wu Junjie Ding +8 位作者 Wenjun Cui Weixiao Lin Zefan Xue Zhi Yang Jiahui Liu Xiaolei Nie Wanting Zhu Gustaaf Van Tendeloo Xiahan Sang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期359-366,共8页
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int... The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film. 展开更多
关键词 Bi_(2)Te_(3) nanoflakes interface engineering scanning transmission electron microscopy thermoelectric thin film
在线阅读 下载PDF
Interface engineering of advanced electrocatalysts toward alkaline hydrogen evolution reactions
12
作者 Wangyang Wu Shidan Yang +5 位作者 Huidan Qian Ling Zhang Lishan Peng Li Li Bin Liu Zidong Wei 《Chinese Journal of Catalysis》 CSCD 2024年第11期1-19,共19页
Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To red... Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To reduce energy consumption and improve energy utilization efficiency,highly active electrocatalytic electrodes are essential for lowering the energy barrier of the HER.Catalysts featuring multiple interfaces have attracted significant research interest recently due to their enhanced physicochemical properties.Reasonable interface modulation can optimize intermediate active species’adsorption energy,improve catalytic active sites’selectivity,and enhance intrinsic catalytic activity.Here,we provided an overview of the latest advancement in interface engineering for efficient HER catalysts.We begin with a brief introduction to the fundamental concepts and mechanisms of alkaline HER.Then,we analyze and discuss current regulating principles in interface engineering for HER catalysts,focusing particularly on optimizing electron structures and modulating microenvironment reactions.Finally,the challenges and further prospects of interface catalysts for future applications are discussed. 展开更多
关键词 ELECTROCATALYSIS Hydrogen evolution reaction interface engineering Synergistic effect Built-in electric field Hydrogen spillover Structure of interfacial water
在线阅读 下载PDF
Interface engineering of FAPbI_(3) for passivating defects and improving stability with lead chalcogenides
13
作者 LI Yun-hao FENG Xiang-xiang +3 位作者 LONG Meng-qiu CAI Meng-qiu YANG Jun-liang LIU Biao 《Journal of Central South University》 CSCD 2024年第12期4625-4637,共13页
Interface engineering is widely employed to enhance the performance of formamidinium lead triiodide(FAPbI_(3))perovskite solar cells.In this study,six different FAPbI_(3)/PbX(X=S,Se and Te)heterostructures are constru... Interface engineering is widely employed to enhance the performance of formamidinium lead triiodide(FAPbI_(3))perovskite solar cells.In this study,six different FAPbI_(3)/PbX(X=S,Se and Te)heterostructures are constructed,including the PbI interface and I interface perovskite.In addition,the lead vacancies(V-Pb)and iodine vacancies(V-I)are designed at the perovskite interface.The results show that the PbI interface is more stable than I interface in the heterostructures.The PbX covering layer on the surface of the FAPbI_(3) perovskite stabilizes the perovskite octahedral structure by interface interactions and charge reconstruction that are beneficial to passivate perovskite interface defects and inhibit the phase transition.It shows that the PbTe covering layer exhibits the best passivation effect for lead vacancy defects,while PbS covering layer shows the best passivation effect for iodine vacancy defects.Additionally,appropriate structural stress can strengthen the thermal stability of defective perovskite.This work reveals the FAPbI_(3)/PbX interface engineering,and offers new insights into effectively passivating defects and improving the stability of FAPbI_(3). 展开更多
关键词 interface engineering FAPbI_(3) PBX PSCs STABILITY
在线阅读 下载PDF
Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability 被引量:12
14
作者 Pan Wang Yuanzhi Luo +4 位作者 Gaixia Zhang Zhangsen Chen Hariprasad Ranganathan Shuhui Sun Zhicong Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期246-262,共17页
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid ma... Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy. 展开更多
关键词 interface engineering Protective shell Manganese compound Nickel sulfides BIFUNCTIONAL Water splitting
在线阅读 下载PDF
Recent Advances in Interface Engineering for Electrocatalytic CO_(2) Reduction Reaction 被引量:13
15
作者 Junjun Li Sulaiman Umar Abbas +2 位作者 Haiqing Wang Zhicheng Zhang Wenping Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期499-533,共35页
Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically re... Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed. 展开更多
关键词 interface engineering CO_(2)reduction reaction ELECTROCATALYSIS HETEROSTRUCTURE
在线阅读 下载PDF
Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions 被引量:8
16
作者 Hui Zhao Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期89-104,共16页
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa... To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed. 展开更多
关键词 Noble metal-free electrocatalysts Electrocatalysis Surface/interface engineering Metal-air battery Overall water splitting
在线阅读 下载PDF
Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions 被引量:6
17
作者 Dongxue Guo Shuo Wang +2 位作者 Jun Xu Wenjun Zheng Danhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期448-468,共21页
Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3... Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability. 展开更多
关键词 Nitrogen reduction ELECTROCATALYSIS Defect engineering interface engineering Ambient conditions
在线阅读 下载PDF
Tunable and improved microwave absorption of flower-like core@shell MFe_(2)O_(4)@MoS_(2)(M=Mn,Ni and Zn)nanocomposites by defect and interface engineering 被引量:7
18
作者 Junxiong Xiao Xiaosi Qi +4 位作者 Xiu Gong Qiong Peng Yanli Chen Ren Xie Wei Zhong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第8期137-146,共10页
Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategie... Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategies,in this study,M Fe_(2)O_(4)and flower-like core@shell M Fe_(2)O_(4)@MoS_(2)(M=Mn,Ni,and Zn)sam-ples with different categories were elaborately designed and selectively produced in large scale through a simple two-step hydrothermal reaction.We conducted the systematical investigation on their microstruc-tures,electromagnetic parameters and microwave absorption performances(MAPs).The obtained results revealed that the large radius of M^(2+)cation could effectively boost the concentration of oxygen vacancy in the M Fe_(2)O_(4)and M Fe_(2)O_(4)@MoS_(2)samples,which resulted in the improvement of dielectric loss capabil-ities and MAPs.Furthermore,the introduction of MoS_(2)nanosheets greatly improved the interfacial effect and enhanced the polarization loss capabilities,which also boosted the MAPs.By taking full advantage of the defect and interface,the designed M Fe_(2)O_(4)@MoS_(2)samples displayed tunable and excellent com-prehensive MAPs including strong absorption capability,wide absorption bandwidth and thin matching thicknesses.Therefore,the clear understanding of defect and interface engineering made these strategies well elaborately designed and applicable to improving MAPs. 展开更多
关键词 Core@shell structure M Fe_(2)O_(4)@MoS_(2)(M=Mn Ni and Zn) Defect and interface engineering Improved microwave absorption properties
原文传递
Electronic modulation and interface engineering of electrospun nanomaterials‐based electrocatalysts toward water splitting 被引量:18
19
作者 Wei Song Meixuan Li +1 位作者 Ce Wang Xiaofeng Lu 《Carbon Energy》 CAS 2021年第1期101-128,共28页
Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficienc... Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated. 展开更多
关键词 electrocatalysis electronic modulation electrospun nanomaterials interface engineering water splitting
在线阅读 下载PDF
A critical review on composite solid electrolytes for lithium batteries:Design strategies and interface engineering 被引量:4
20
作者 Tianqi Yang Cheng Wang +7 位作者 Wenkui Zhang Yang Xia Hui Huang Yongping Gan Xinping He Xinhui Xia Xinyong Tao Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期189-209,共21页
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren... The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs. 展开更多
关键词 Inorganic solid electrolytes Polymer solid electrolytes Composite solid electrolytes interface engineering
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部