期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical analysis on interface damage ofslab track under freeze-thaw cycles
1
作者 REN Juan-juan DU Wei +2 位作者 YE Wen-long XU Xue-shan DENG Shi-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3782-3806,共25页
The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obt... The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles. 展开更多
关键词 CRTS III prefabricated slab track freeze-thaw cycle bonding performance cohesive zone model interface damage
在线阅读 下载PDF
INTERFACE DAMAGE ANALYSIS OF FIBER REINFORCED COMPOSITES WITH DUCTILE MATRIX 被引量:1
2
作者 周储伟 王鑫伟 +1 位作者 杨卫 方岱宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期119-123,共5页
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi... A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs. 展开更多
关键词 fiber reinforced composite micro mechanics cohesive zone model interface damage tensile strength
在线阅读 下载PDF
Size and Interface Effects on Tensile Strength of Polymers with Nano/Micro Particle Inclusions
3
作者 R.Yuan X.Ma +1 位作者 L.H.Liang Y.Wei 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第5期812-822,共11页
Polymers with particle inclusions have wide applications,and the mechanical properties of polymer composites affect their reliability in service.The strength of these composites is dependent on factors such as particl... Polymers with particle inclusions have wide applications,and the mechanical properties of polymer composites affect their reliability in service.The strength of these composites is dependent on factors such as particle fraction,size,distribution,and interface interaction between the two phases,in addition to the properties of the polymers and particles.The size effect of particles and interface damage play an important role and thus draw considerable attention.In this paper,the size-and interface-dependent strength of polypropylene(PP)with nano/micro silica(SiO_(2))particles of different fractions is studied through a combination of tensile experiments on a series of samples and corresponding three-dimensional(3D)finite element modeling.The results indicate that PP with 2%SiO_(2)nanoparticles of 50 nm exhibits relatively higher tensile strength,shedding light on the microstructure mechanism where smaller particle sizes lead to better interface bonding.Furthermore,the particle size and interface coupling effect is analyzed based on the size-dependent elastic modulus model and the interface-cohesive model.The simulation demonstrates the local interface damage evolution around a particle of the composites in tension.These findings are beneficial for designing polymer composites with nanoparticle inclusions. 展开更多
关键词 Polymer-matrix composites Ceramic nanoparticles Mechanical properties Size effect interface damage
原文传递
An interface shear damage model of chromium coating/steel substrate under thermal erosion load 被引量:9
4
作者 Xiao-long Li Yong Zang +3 位作者 Yong Lian Min-yu Ma Lei Mu Qin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期405-415,共11页
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e... The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel. 展开更多
关键词 Cr coating/steel substrate Thermal erosion Finite element simulation Ultimate shear strength interface shear damage model
在线阅读 下载PDF
Numerical investigation on interface enhancement mechanism of Ag-SnO_(2) contact materials with Cu additive 被引量:1
5
作者 MAYuan-yuan LI Gui-jing FENGWen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1085-1097,共13页
The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu n... The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu nanoparticles on the interface strength and failure behavior of the Ag-SnO_(2) contact materials are investigated by numerical simulations and experiments.Three-dimensional representative volume element(RVE)models for the Ag-SnO_(2) materials without and with Cu nanoparticles are established,and the cohesive zone model is used to simulate the interface debonding process.The results show that the stress−strain relationships and failure modes predicted by the simulation agree well with the experimental ones.The adhesion strengths of the Ag/SnO_(2) and Ag/Cu interfaces are respectively predicted to be 100 and 450 MPa through the inverse method.It is found that the stress concentration around the SnO_(2) phase is the primary reason for the interface debonding,which leads to the failure of Ag-SnO_(2) contact material.The addition of Cu particles not only improves the interface strength,but also effectively suppresses the initiation and propagation of cracks.The results have an reference value for improving the processability of Ag based contact materials. 展开更多
关键词 Ag-SnO_(2)contact material numerical simulation interface damage failure behavior
在线阅读 下载PDF
Mechanical characteristic variation of ballastless track in highspeed railway:effect of train–track interaction and environment loads 被引量:7
6
作者 Shengyang Zhu Jun Luo +1 位作者 Mingze Wang Chengbiao Cai 《Railway Engineering Science》 2020年第4期408-423,共16页
Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of... Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure. 展开更多
关键词 Ballastless track High-speed railway Mechanical characteristic interface damage Train–track interaction Temperature gradient Dynamic water pressure Cohesive zone model
在线阅读 下载PDF
Experimental research and numerical simulation of RC beams strengthened with bonded steel plates 被引量:8
7
作者 LEI Dong CHEN GuangYuan +1 位作者 CHEN YuQuan REN QingWen 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3270-3277,共8页
It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the ... It is a common method to strengthen the damaged RC structures with bonded steel plates. At present the ultimate bearing ca- pacity of RC structures strengthened with bonded steel plates is calculated mostly using the theory based on the test. Four beams, including one reference beam, two strengthened concrete beams in primary force and secondary force respectively, and one strengthened concrete beam which was not anchored enough, were tested under four-point bending (4PB) in order to get the data of strain of longitudinal bars, bonded bottom steel plate in tension and deflection of beams in the middle span. The experimental program was supported by a three-dimensioned finite analysis using ABAQUS. At the end of experiments and finite analysis, it is concluded that the investing strengthening technique can significantly improve the load-carrying capacity and the phenomenon of stress concentration at the end of interface, as well as the damage at interface, can be well simulated with cohesive element provided by ABAQUS. 展开更多
关键词 RC beams strengthened with bonded steel plates secondary force finite element analysis damage of interface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部