Batteries power numerous technolo-gies,yet higher energy density de-mands push lithium cobalt oxide(Li-CoO_(2)referred as LCO)cathodes to higher voltages,triggering unwanted chemical reactions.In this work,we in-vesti...Batteries power numerous technolo-gies,yet higher energy density de-mands push lithium cobalt oxide(Li-CoO_(2)referred as LCO)cathodes to higher voltages,triggering unwanted chemical reactions.In this work,we in-vestigate how carbonate-based elec-trolytes degrade on deeply delithiated LCO surfaces via extensive reactive molecular dynamics simulations.These simulations unveil the forma-tion of characteristic gas products and unstable surface species,which can undermine the cathode structure and reduce battery performance.By examining different solvent composi-tions,the simulations reveal that partial fluorination reduces oxidative degradation and gas evolution,thus offering a route to improve interface stability.Overall,this study provides an atomic-level perspective on preventing unwanted reactions and guiding the design of safer and more robust battery systems for high-voltage applications.展开更多
基金support from the National Key Research and Development Program of China(No.2022YFB2502200)the Natural Science Foun-dation of Jiangsu Province(BK20230065)+2 种基金the Key Laboratory of Functional Nano&Soft Materials,the Collaborative Innovation Center of Suzhou Nano Sci-ence&Technology,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices,Yue Liu acknowledges support from the National Natural Science Foundation of China(22303058)the Natural Science Foundation of Jiangsu Province(BK20230475).
文摘Batteries power numerous technolo-gies,yet higher energy density de-mands push lithium cobalt oxide(Li-CoO_(2)referred as LCO)cathodes to higher voltages,triggering unwanted chemical reactions.In this work,we in-vestigate how carbonate-based elec-trolytes degrade on deeply delithiated LCO surfaces via extensive reactive molecular dynamics simulations.These simulations unveil the forma-tion of characteristic gas products and unstable surface species,which can undermine the cathode structure and reduce battery performance.By examining different solvent composi-tions,the simulations reveal that partial fluorination reduces oxidative degradation and gas evolution,thus offering a route to improve interface stability.Overall,this study provides an atomic-level perspective on preventing unwanted reactions and guiding the design of safer and more robust battery systems for high-voltage applications.