A novel NiAlTa blade tip protective coating is designed and its oxidation,hot corrosion,and interdiffusion with DD5 single-crystal superalloys are investigated.NiAlTa coatings exhibit low oxidation rates.The dragging ...A novel NiAlTa blade tip protective coating is designed and its oxidation,hot corrosion,and interdiffusion with DD5 single-crystal superalloys are investigated.NiAlTa coatings exhibit low oxidation rates.The dragging effect of Ta on Al hinders the external diffusion of Al.Ta that accumulates at the Al_(2)O_(3)grain boundaries reduces the internal diffusion of O by combining or reacting with it.NaCl aggravates the hot corrosion through self ustaining cycles of chlorination/oxidation.β-NiAl phase fails first as a diffusion channel for the corrosive medium.Significant element interdiffusion occurs.An interdiffusion zone and a secondary reaction zone are formed.Interdiffusion changes the percentage of elements,causing a phase transition of the coating.The volume change caused by the phase transition induces bulging and cracking of the oxide film.Furthermore,the oxidation,hot corrosion,and interdiffusion mechanisms are discussed.展开更多
Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations.In particular,maintaining the optimal levels of solids conten...Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations.In particular,maintaining the optimal levels of solids content is essential for achieving the most effective fluid performance.Proper management of solids content also reduces the risk of tool failures.Traditional solids content analysis methods,such as retort analysis,require substantial human intervention and time,which can lead to inaccuracies,time-management issues,and increased operational risks.In contrast to human-intensive methods,machine learning may offer a viable alternative for solids content estimation due to its pattern-recognition capability.In this study,a large set of laboratory reports of drilling-fluid analyses from 130 oil wells around the world were compiled to construct a comprehensive data set.The relationships among various rheological parameters were analyzed using statistical methods and machine learning algorithms.Several machine learning algorithms of diverse classes,namely linear(linear regression,ridge regression,and ElasticNet regression),kernel-based(support vector machine)and ensemble tree-based(gradient boosting,XGBoost,and random forests)algorithms,were trained and tuned to estimate solids content from other readily available drilling fluid properties.Input variables were kept consistent across all models for interpretation and comparison purposes.In the final stage,different evaluation metrics were employed to evaluate and compare the performance of different classes of machine learning models.Among all algorithms tested,random forests algorithm was found to be the best predictive model resulting in consistently high accuracy.Further optimization of the random forests model resulted in a mean absolute percentage error(MAPE)of 3.9%and 9.6%and R^(2) of 0.99 and 0.93 for the training and testing sets,respectively.Analysis of residuals,their histograms and Q-Q normality plots showed Gaussian distributions with residuals that are scattered around a mean of zero within error ranges of±1%and±4%,for training and testing,respectively.The selected model was further validated by applying the rheological measurements from mud samples taken from an offshore well from the Gulf of Mexico.The model was able to estimate total solids content in those four mud samples with an average absolute error of 1.08% of total solids content.The model was then used to develop a web-based graphical-user-interface(GUI)application,which can be practically used at the rig site by engineers to optimize drilling fluid programs.The proposed model can complement automation workflows that are designed to measure fundamental rheological properties in real time during drilling operations.While a standard retort test can take approximately 2 h at the rig site,such kind of real-time estimations can help the rig personnel to timely optimize drilling fluids,with a potential of saving 2920 man-hours in a given year for a single drilling rig.展开更多
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ...The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).展开更多
Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing researc...Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms.Here,we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids.A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction.We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration,nonlinear diffractive elements,and multi-functional optical modulation.This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom,expands the current cognition of ultrafast laser-based material modification in transparent solids,and establishes a new scientific aspect of strong-field optics,namely,focal volume optics for composite structuring transparent solids.展开更多
Pure metal Fe films with thickness of about 100nm were deposited on Si (100) substrates by DC magnetron sputtering. Annealing was subsequently performed in a vacuum furnace in the temperature range of 600-1000℃ for...Pure metal Fe films with thickness of about 100nm were deposited on Si (100) substrates by DC magnetron sputtering. Annealing was subsequently performed in a vacuum furnace in the temperature range of 600-1000℃ for 2h. The samples were characterized by means of Rutherford backscattering (RBS) with 3MeV carbon ions. The RBS data were fitted with SIMNRA 6.0, and the results show the atomic interdiffusion in Fe/Si systems. The microstructures and crystal structures were characterized by scanning electron microscope and X-ray diffrac- tion. The effects of annealing on atomic interdiffusion, silicide formation, and microstructures in Fe/Si systems were analyzed.展开更多
本研究旨在建立一种高效、快速、选择性测定食品中痕量汞的方法。通过溶剂热法及后续的巯基化修饰,成功制备了一种新型巯基功能化磁性介孔二氧化硅(Thiol-functionalized Magnetic Mesoporous Silica,记为mSS@Fe_(3)O_(4))吸附剂。将该...本研究旨在建立一种高效、快速、选择性测定食品中痕量汞的方法。通过溶剂热法及后续的巯基化修饰,成功制备了一种新型巯基功能化磁性介孔二氧化硅(Thiol-functionalized Magnetic Mesoporous Silica,记为mSS@Fe_(3)O_(4))吸附剂。将该吸附剂用于磁性固相萃取(MSPE),结合原子荧光光谱法(AFS),构建了一种分析食品中痕量汞的新方法。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对材料进行了表征,证实了巯基已成功接枝到磁性介孔二氧化硅表面。系统优化了萃取过程中的关键参数,包括样品pH值、吸附时间、吸附剂用量、洗脱液组成和上样体积。结果表明,归因于材料的介孔结构和高比表面积,吸附平衡在1 min内即可达到,实现了对Hg^(2+)的快速富集。在最优条件下,该吸附剂对Hg^(2+)的理论最大吸附容量(qm)为67.89 mg/g;在回收率保持>90%时,最大上样体积为200 mL,预浓缩因子可达200。该方法具有较宽的pH值(1~13)适用范围和优异的抗基质干扰能力。方法线性范围为0.10~4.0μg/L(相关系数r=0.9996),方法检出限(MDL)为0.012μg/kg,对空白样品进行7次平行测定的相对标准偏差(RSD)为2.4%(n=7)。通过对国家标准物质和多种实际样品(草鱼、大米等)的加标回收实验,验证了方法的准确性和可靠性,回收率在94.0%~106%。该方法集快速、高效、高选择性与高灵敏度于一体,为食品中痕量汞的常规监测提供了有力的技术支持。展开更多
The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion c...The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.展开更多
本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年10月1日至2025年11月30日上线的锂电池研究论文,共有5484篇,选择其中100篇加以评论。研究的正极材料主要有高镍三元材料、钴酸锂...本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年10月1日至2025年11月30日上线的锂电池研究论文,共有5484篇,选择其中100篇加以评论。研究的正极材料主要有高镍三元材料、钴酸锂、富锂相材料和卤化物正极材料,相关研究重点关注表面包覆层、前驱体及合成条件、充放电循环中的结构变化等。通过改进包覆层和颗粒间填充铟改善硅负极材料的性能,也研究了金属锂与锂铝合金负极。研究的固态电解质主要有硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面侧重于研究提升高电压正极、金属锂负极、硅基负极电池性能的添加剂与溶剂研究。针对固态电池,复合正极制备、锂负极界面枝晶及副反应抑制和外压问题是主要研究课题。液态电池技术方面侧重于锂硫电池正极的设计。表征分析涵盖了锂扩散动力学、SEI形成机理、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及三元材料掺杂和结构演变、电解液物化性质以及寻找新型固态电解质等,此外电池中电解液与正负极的界面以及固态电解质与Li的界面问题均受到重点关注。展开更多
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant(No.XDB 047010204)Liaoning Key Laboratory of Aero-engine Material Tribology for both financial and facility support
文摘A novel NiAlTa blade tip protective coating is designed and its oxidation,hot corrosion,and interdiffusion with DD5 single-crystal superalloys are investigated.NiAlTa coatings exhibit low oxidation rates.The dragging effect of Ta on Al hinders the external diffusion of Al.Ta that accumulates at the Al_(2)O_(3)grain boundaries reduces the internal diffusion of O by combining or reacting with it.NaCl aggravates the hot corrosion through self ustaining cycles of chlorination/oxidation.β-NiAl phase fails first as a diffusion channel for the corrosive medium.Significant element interdiffusion occurs.An interdiffusion zone and a secondary reaction zone are formed.Interdiffusion changes the percentage of elements,causing a phase transition of the coating.The volume change caused by the phase transition induces bulging and cracking of the oxide film.Furthermore,the oxidation,hot corrosion,and interdiffusion mechanisms are discussed.
文摘Characterization and optimization of physical and chemical properties of drilling fluids are critical for the efficiency and success of drilling operations.In particular,maintaining the optimal levels of solids content is essential for achieving the most effective fluid performance.Proper management of solids content also reduces the risk of tool failures.Traditional solids content analysis methods,such as retort analysis,require substantial human intervention and time,which can lead to inaccuracies,time-management issues,and increased operational risks.In contrast to human-intensive methods,machine learning may offer a viable alternative for solids content estimation due to its pattern-recognition capability.In this study,a large set of laboratory reports of drilling-fluid analyses from 130 oil wells around the world were compiled to construct a comprehensive data set.The relationships among various rheological parameters were analyzed using statistical methods and machine learning algorithms.Several machine learning algorithms of diverse classes,namely linear(linear regression,ridge regression,and ElasticNet regression),kernel-based(support vector machine)and ensemble tree-based(gradient boosting,XGBoost,and random forests)algorithms,were trained and tuned to estimate solids content from other readily available drilling fluid properties.Input variables were kept consistent across all models for interpretation and comparison purposes.In the final stage,different evaluation metrics were employed to evaluate and compare the performance of different classes of machine learning models.Among all algorithms tested,random forests algorithm was found to be the best predictive model resulting in consistently high accuracy.Further optimization of the random forests model resulted in a mean absolute percentage error(MAPE)of 3.9%and 9.6%and R^(2) of 0.99 and 0.93 for the training and testing sets,respectively.Analysis of residuals,their histograms and Q-Q normality plots showed Gaussian distributions with residuals that are scattered around a mean of zero within error ranges of±1%and±4%,for training and testing,respectively.The selected model was further validated by applying the rheological measurements from mud samples taken from an offshore well from the Gulf of Mexico.The model was able to estimate total solids content in those four mud samples with an average absolute error of 1.08% of total solids content.The model was then used to develop a web-based graphical-user-interface(GUI)application,which can be practically used at the rig site by engineers to optimize drilling fluid programs.The proposed model can complement automation workflows that are designed to measure fundamental rheological properties in real time during drilling operations.While a standard retort test can take approximately 2 h at the rig site,such kind of real-time estimations can help the rig personnel to timely optimize drilling fluids,with a potential of saving 2920 man-hours in a given year for a single drilling rig.
基金supported by the National Natural Science Foundation of China (Grant No.51705082)Fujian Provincial Minjiang Scholar Program (Grant No.0020-510759)+1 种基金Qishan Sholar program in Fuzhou University (Grant No.0020-650289)Fuzhou University Testing Fund of precious apparatus (Grant No.2023T018).
文摘The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).
基金financially supported by the National Key Research and Development Program of China(No.2021YFB2802001)the National Natural Science Foundation of China(Grant Nos.12304349,U20A20211,62275233)the Postdoctoral Fellowship Program of CPSF(GZB20230628,GZC20241465)。
文摘Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms.Here,we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids.A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction.We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration,nonlinear diffractive elements,and multi-functional optical modulation.This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom,expands the current cognition of ultrafast laser-based material modification in transparent solids,and establishes a new scientific aspect of strong-field optics,namely,focal volume optics for composite structuring transparent solids.
文摘Pure metal Fe films with thickness of about 100nm were deposited on Si (100) substrates by DC magnetron sputtering. Annealing was subsequently performed in a vacuum furnace in the temperature range of 600-1000℃ for 2h. The samples were characterized by means of Rutherford backscattering (RBS) with 3MeV carbon ions. The RBS data were fitted with SIMNRA 6.0, and the results show the atomic interdiffusion in Fe/Si systems. The microstructures and crystal structures were characterized by scanning electron microscope and X-ray diffrac- tion. The effects of annealing on atomic interdiffusion, silicide formation, and microstructures in Fe/Si systems were analyzed.
基金Project(2011CB012803) supported by the National Basic Research Program of ChinaProject(NCET-10-0278) supported by Program for New Century Excellent Talents in University,China
文摘The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.
文摘本文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2025年10月1日至2025年11月30日上线的锂电池研究论文,共有5484篇,选择其中100篇加以评论。研究的正极材料主要有高镍三元材料、钴酸锂、富锂相材料和卤化物正极材料,相关研究重点关注表面包覆层、前驱体及合成条件、充放电循环中的结构变化等。通过改进包覆层和颗粒间填充铟改善硅负极材料的性能,也研究了金属锂与锂铝合金负极。研究的固态电解质主要有硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面侧重于研究提升高电压正极、金属锂负极、硅基负极电池性能的添加剂与溶剂研究。针对固态电池,复合正极制备、锂负极界面枝晶及副反应抑制和外压问题是主要研究课题。液态电池技术方面侧重于锂硫电池正极的设计。表征分析涵盖了锂扩散动力学、SEI形成机理、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及三元材料掺杂和结构演变、电解液物化性质以及寻找新型固态电解质等,此外电池中电解液与正负极的界面以及固态电解质与Li的界面问题均受到重点关注。