Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function ...Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security.展开更多
Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonline...Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.展开更多
Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o...Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.展开更多
The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various...The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion.展开更多
Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely imp...Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.展开更多
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ...To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.展开更多
We study the problem of the prediction of interconnection dimensions for FPGAs, including estimating interconnection length and channel width. Experimental results show that our estimates are more accurate than those ...We study the problem of the prediction of interconnection dimensions for FPGAs, including estimating interconnection length and channel width. Experimental results show that our estimates are more accurate than those of existing methods.展开更多
This paper introduces the current situation of China power industry and interconnection, the necessity to develop interconnection, the principle of nationwide interconnection and the key technologies to be studiedincl...This paper introduces the current situation of China power industry and interconnection, the necessity to develop interconnection, the principle of nationwide interconnection and the key technologies to be studiedinclude HVDC and FACTS. The paper also discusses thefeasibility of 750 kV to be used in the northwest.regionand to speed up research and development of nighervoltage level in other regions of China, as well as scl-ence and technical innovation for transmission and dis-tribution projects.展开更多
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as n...The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as network IP address,and propose a wavelength routing topology to extend the scale of a network and realize the scalability of the network.Moreover,a twin wavelength ring network that is being developed in our laboratory to implement and test the function of wavelength routing is presented,and the main units of the twin wavelength ring network are presented also.According to the testing results based on a single wavelength ring network,it proves that the optical interconnection technology is a perfect technology to provide enough communication bandwidth for computer network.展开更多
Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heat...Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heating. The size distribution for groups of bubbles follows a Gaussian distribution in the early stage and Lifshitz-Slyozov-Wagner(LSW) diffusion controlled distribution in the final stage. The intermetallic compounds(IMCs) first form during solidification, following by the hydrogen bubbles. The bubbles between two adjacent Al3Ni grains grow unidirectionally along the liquid channel, with the bottom being impeded by the Al3Ni phase and the radius of the growth front being smaller. For the bubbles at triple junctions, they grow along the liquid channel and the crack with morphology transition.展开更多
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v...The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.展开更多
The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies...The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea.展开更多
Vigorously developing global renewable energy such as wind energy,solar energy,and hydropower and realizing global clean resource sharing are paramount driving forces for building the Global Energy Interconnection(GEI...Vigorously developing global renewable energy such as wind energy,solar energy,and hydropower and realizing global clean resource sharing are paramount driving forces for building the Global Energy Interconnection(GEI).With the help of a comparative analysis of renewable energy development and global renewable energy development scenarios,this paper expounds on the similarities between China^1 and global renewable energy development.Based on the analysis of renewable energy development and the status of global renewable energy development in China,this paper summarizes the relevant experience and problems of renewable energy development in China.According to these problems,this paper also puts forward the corresponding solutions and measures,that is,to promote the healthy and steady development of renewable energy in China through the source-network-load-storage and market coordination.Finally,by analyzing the development requirements and current foundation of GEI,insights and suggestions are proposed for the future development of renewable energy for the GEI construction.展开更多
Objective:The aim of this study is to assess the neural interconnection between the acupoint"Chéngshān(承山BL57)"and sciatic nerve from the peripheral nervous system(PNS)to the central nervous system(C...Objective:The aim of this study is to assess the neural interconnection between the acupoint"Chéngshān(承山BL57)"and sciatic nerve from the peripheral nervous system(PNS)to the central nervous system(CNS).Methods:SD rats were systematically examined from the hip to the hind limb along the route of sciatic nerve with regional anatomical technique,and further traced from the BL57 and the trunk of sciatic nerve by the neural tracing technique with cholera toxin subunit B(CTB)and CTB conjugated Alexa Fluor 488 and 594(CTB-AF488/594).Results:After regional anatomy,it was found that the sciatic nerve ran down from the hip to the hind limb and sequentially sent out the tibial and sural branches respectively to the deep and superficial layers of BL57.The CTB labeling associated with both BL57 and sciatic nerve distributed in the same spinal segments and definite regions,including the sensory neurons in lumber 3(L3)-lumber 6(L6)dorsal root ganglia(DRGs),transganglionic axons mainly in the L3-L6 spinal dorsal horn,Clarke’s nucleus,and gracile nucleus,as well as motor neurons mainly in the L3-L6 spinal ventral horn.However,the amount of neural labeling was significantly less in the cases of BL57 than that of sciatic nerve.Conclusions:These results indicate that there is distinct sensory and motor interconnection between the BL57 and the sciatic nerve,which may potentially serve for the active role of the BL57 playing in meliorating the disorders of sciatic nerve.展开更多
With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systema...With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systematic research on profit models for these projects is insufficient.This paper first analyzes the profit sources of interconnection projects.Based on the analysis results,profit models are considered under different regulatory systems for three types of crossborder interconnection projects:fully market-oriented,semi-marketization,and fully supervised.Finally,measures for increasing the profitability and sustainable development of power interconnection projects are proposed.展开更多
文摘Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universite´d’Excellence(LUE)in cooperation between Universite´de Lorraine(France)and King Mongkut’s University of Technology North Bangkok(year 2021-2024/2025-28)by the National Research Council of Thailand(NRCT)under Research Team Promotion Grant(Senior Research Scholar Program)under Grant No.N42A 680561by the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation under Research project Grant No.B41G680025.
文摘Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.
基金supported by the National Natural Science Foundation of China(72271213)the Shenzhen Science and Technology Program(JCYJ20220530143800001 and RCYX20221008092927070)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515240024)the National Key Research and Development Program of China(2022YFB2403500).
文摘Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.
文摘The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion.
基金supported by the GEIGC Science and Technology Project in the framework of“Research on Comprehensive Path Evaluation Methods and Practical Models for the Synergetic Development of Global Energy,Atmospheric Environment and Human Health”(grant No.20210302007).
文摘Climate change and air pollution are primarily caused by the combustion and utilization of fossil fuels.Both climate change and air pollution cause health problems.Based on the development of China,it is extremely important to explore the synergies of the energy transition,CO_(2) reduction,air pollution control,and health improvement under the target of carbon peaking before 2030 and carbon neutrality before 2060.This study introduces the policy evolution and research progress related to energy,climate change,and the environment in China and proposes a complete energy-climate-air-health mechanism framework.Based on the MESSAGE-GLOBIOM integrated assessment model,emission inventory and chemical transport model,and exposure-response function,a comprehensive assessment method of energy-climate-air-health synergies was established and applied to quantify the impacts of Chinese Energy Interconnection Carbon Neutrality(CEICN)scenario.The results demonstrate that,by 2060,the SO_(2),NO_(x) and PM_(2.5) emissions are estimated to be reduced by 91%,85%,and 90%respectively compared to the business-as-usual(BAU)scenario.The direct health impacts brought by achieving the goal of carbon neutrality will drive the proactive implementation of more emission reduction measures and bring greater benefits to human health.
基金The National Natural Science Foundation of China(No.69973007).
文摘To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.
文摘We study the problem of the prediction of interconnection dimensions for FPGAs, including estimating interconnection length and channel width. Experimental results show that our estimates are more accurate than those of existing methods.
文摘This paper introduces the current situation of China power industry and interconnection, the necessity to develop interconnection, the principle of nationwide interconnection and the key technologies to be studiedinclude HVDC and FACTS. The paper also discusses thefeasibility of 750 kV to be used in the northwest.regionand to speed up research and development of nighervoltage level in other regions of China, as well as scl-ence and technical innovation for transmission and dis-tribution projects.
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金Supported by“863” high technology research and developmentprogram,No.863- 30 7- 1 4 - 2 (0 1 )
文摘The wavelength routing technology applied to computer interconnection networks is introduced in this paper.By analyzing the relation between wavelength and network routing,we describe a concept of wavelength used as network IP address,and propose a wavelength routing topology to extend the scale of a network and realize the scalability of the network.Moreover,a twin wavelength ring network that is being developed in our laboratory to implement and test the function of wavelength routing is presented,and the main units of the twin wavelength ring network are presented also.According to the testing results based on a single wavelength ring network,it proves that the optical interconnection technology is a perfect technology to provide enough communication bandwidth for computer network.
基金supported by the National Key Research and Development Program (2017YFA0403800)the National Natural Science Foundation of China (51374144, 51727802)+2 种基金the Shanghai Municipal Natural Science Foundation (13ZR1420600)Shanghai Rising-Star Program (14QA1402300)The support of synchrotron radiation phase-contrast imaging by the BL13W1 beam line of Shanghai Synchrotron Radiation Facility (SSRF), China, is gratefully acknowledged
文摘Synchrotron X-ray radiography was used to carry out an in-situ observation of the hydrogen bubble evolution in the liquid Al/solid Ni interconnection. The individual bubble mainly grows in a stochastic way during heating. The size distribution for groups of bubbles follows a Gaussian distribution in the early stage and Lifshitz-Slyozov-Wagner(LSW) diffusion controlled distribution in the final stage. The intermetallic compounds(IMCs) first form during solidification, following by the hydrogen bubbles. The bubbles between two adjacent Al3Ni grains grow unidirectionally along the liquid channel, with the bottom being impeded by the Al3Ni phase and the radius of the growth front being smaller. For the bubbles at triple junctions, they grow along the liquid channel and the crack with morphology transition.
基金supported by the Science and Technology Support Program of Guizhou Province([2022]General 012)the Key Science and Technology Project of China Southern Power Grid Corporation(GZKJXM20220043)。
文摘The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method.
文摘The future energy policy,long-term energy supply plan,and necessity of power system interconnection are discussed considering the climate change agreement and national carbon neutrality policy.Although several studies have been conducted on power system interconnection related projects,a few reviews have been performed related to the Greenhouse Gas Convention in North-East Asian(NEA)regions.Therefore,the future directions and possible scenarios on power system interconnection are studied by combining the issues by comprehensively considering carbon neutrality policy according to the perspective of Korea.
文摘Vigorously developing global renewable energy such as wind energy,solar energy,and hydropower and realizing global clean resource sharing are paramount driving forces for building the Global Energy Interconnection(GEI).With the help of a comparative analysis of renewable energy development and global renewable energy development scenarios,this paper expounds on the similarities between China^1 and global renewable energy development.Based on the analysis of renewable energy development and the status of global renewable energy development in China,this paper summarizes the relevant experience and problems of renewable energy development in China.According to these problems,this paper also puts forward the corresponding solutions and measures,that is,to promote the healthy and steady development of renewable energy in China through the source-network-load-storage and market coordination.Finally,by analyzing the development requirements and current foundation of GEI,insights and suggestions are proposed for the future development of renewable energy for the GEI construction.
基金the project of National Key R&D Program of China:2019YFC1709103National Natural Science Foundation of China:81774211,81774432,81801561:82004492the Fundamental Research Funds for the Central Public Welfare Research Institutes:ZZ13-YQ-068,ZZ201914001,ZZ202017006,ZZ202017015。
文摘Objective:The aim of this study is to assess the neural interconnection between the acupoint"Chéngshān(承山BL57)"and sciatic nerve from the peripheral nervous system(PNS)to the central nervous system(CNS).Methods:SD rats were systematically examined from the hip to the hind limb along the route of sciatic nerve with regional anatomical technique,and further traced from the BL57 and the trunk of sciatic nerve by the neural tracing technique with cholera toxin subunit B(CTB)and CTB conjugated Alexa Fluor 488 and 594(CTB-AF488/594).Results:After regional anatomy,it was found that the sciatic nerve ran down from the hip to the hind limb and sequentially sent out the tibial and sural branches respectively to the deep and superficial layers of BL57.The CTB labeling associated with both BL57 and sciatic nerve distributed in the same spinal segments and definite regions,including the sensory neurons in lumber 3(L3)-lumber 6(L6)dorsal root ganglia(DRGs),transganglionic axons mainly in the L3-L6 spinal dorsal horn,Clarke’s nucleus,and gracile nucleus,as well as motor neurons mainly in the L3-L6 spinal ventral horn.However,the amount of neural labeling was significantly less in the cases of BL57 than that of sciatic nerve.Conclusions:These results indicate that there is distinct sensory and motor interconnection between the BL57 and the sciatic nerve,which may potentially serve for the active role of the BL57 playing in meliorating the disorders of sciatic nerve.
基金supported by the State Grid Corporation of China’s Science & Technology Project “Risk Identification and Countermeasures of SGCC in the Transition Period of Power Sector Reform.”
文摘With the increasing demand worldwide for power grid interconnection,a growing number of related projects are under planning or construction.Despite the rapid growth of cross-border interconnection projects,the systematic research on profit models for these projects is insufficient.This paper first analyzes the profit sources of interconnection projects.Based on the analysis results,profit models are considered under different regulatory systems for three types of crossborder interconnection projects:fully market-oriented,semi-marketization,and fully supervised.Finally,measures for increasing the profitability and sustainable development of power interconnection projects are proposed.