期刊文献+
共找到625篇文章
< 1 2 32 >
每页显示 20 50 100
When Communication Networks Meet Federated Learning for Intelligence Interconnecting:A Comprehensive Survey and Future Perspective
1
作者 Sha Zongxuan Huo Ru +3 位作者 Sun Chuang Wang Shuo Huang Tao F.Richard Yu 《China Communications》 2025年第7期74-94,共21页
With the rapid development of network technologies,a large number of deployed edge devices and information systems generate massive amounts of data which provide good support for the advancement of data-driven intelli... With the rapid development of network technologies,a large number of deployed edge devices and information systems generate massive amounts of data which provide good support for the advancement of data-driven intelligent models.However,these data often contain sensitive information of users.Federated learning(FL),as a privacy preservation machine learning setting,allows users to obtain a well-trained model without sending the privacy-sensitive local data to the central server.Despite the promising prospect of FL,several significant research challenges need to be addressed before widespread deployment,including network resource allocation,model security,model convergence,etc.In this paper,we first provide a brief survey on some of these works that have been done on FL and discuss the motivations of the Communication Networks(CNs)and FL to mutually enable each other.We analyze the support of network technologies for FL,which requires frequent communication and emphasizes security,as well as the studies on the intelligence of many network scenarios and the improvement of network performance and security by the methods based on FL.At last,some challenges and broader perspectives are explored. 展开更多
关键词 communication networks federated learning intelligence interconnecting machine learning privacy preservation
在线阅读 下载PDF
Machine learning facilitates the development of interconnecting layers for perovskite/silicon heterojunction tandem solar cells with proof-of-concept efficiency>38%
2
作者 Xuejiao Wang Guanlan Chen +12 位作者 Ying Liu Guangyi Wang Wei Han Jin Wang Pengfei Liu Jilei Wang Shaojuan Bao Bo Yu Ying Liu Xinliang Chen Shengzhi Xu Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 2025年第11期77-86,共10页
As the development of single-junction solar cells reaches a bottleneck,tandem solar cells have emerged as a critical pathway to further enhance power conversion efficiency.Among them,monolithic perovskite/silicon hete... As the development of single-junction solar cells reaches a bottleneck,tandem solar cells have emerged as a critical pathway to further enhance power conversion efficiency.Among them,monolithic perovskite/silicon heterojunction tandem solar cells are currently the fastest-growing technology,achieving the highest efficiencies at relatively low costs.The intercon-necting layer,which connects the two sub-cells,plays a crucial role in tandem cell performance.It collects electrons and holes from the respective sub-cells and facilitates recombination and tunneling at the interface.Therefore,the properties of the inter-connecting layer are pivotal to the overall device performance.In this work,we applied statistical analysis and machine learn-ing algorithms to systematically analyze the interconnecting layer.A comprehensive dataset on interconnecting layer parame-ters was established,and predictive modeling was performed using Lasso linear regression,random forest,and multilayer per-ceptron(a type of neural network).The analysis revealed key feature importance for experimental parameters,providing valu-able insights into the application of interconnecting layers in perovskite/silicon heterojunction tandem solar cells.The final opti-mized interconnecting layer can achieve a proof-of-concept efficiency of 38.17%,providing guidance and direction for the devel-opment of monolithic perovskite/silicon tandem solar cells. 展开更多
关键词 perovskite/silicon heterojunction tandem solar cells interconnecting layer machine learning
在线阅读 下载PDF
Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties 被引量:3
3
作者 Yue-Min Xie Tianqi Niu +5 位作者 Qin Yao Qifan Xue Zixin Zeng Yuanhang Cheng Hin-Lap Yip Yong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期12-19,I0001,共9页
As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus... As one of the core parts of two-terminal(2 T) monolithic tandem photovoltaics, the interconnecting layers(ICLs) play a critical role in modulating the carrier transport and recombination between the sub-cells,and thus influencing the tandem device performance. Here, for the first time, the relationship between ICLs architecture and 2 T monolithic perovskite/organic tandem device performance has been studied by investigating the change of ICLs composition layer thickness on the ICLs optical and electrical properties, sub-cells EQE properties, and tandem device J-V properties. It is revealed that the ability of ICLs on modulating the sub-cells carrier balance properties is strongly associated with its composited layers thickness, and the tandem device carrier balance properties can be reflected by the relative EQE intensity between the sub-cells. Finally, with a deep understanding of the mechanisms, rational design of ICLs can be made to benefit the tandem device development. Based on the optimized ICL a high PCE of 20.03% is achieved. 展开更多
关键词 Monolithic perovskite/organic tandem solar cells interconnecting layers(ICLs) Carrier modulating Carrier balance properties
在线阅读 下载PDF
An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering
4
作者 朱樟明 郝报田 +2 位作者 恩云飞 杨银堂 李跃进 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期509-516,共8页
On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising cloc... On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. 展开更多
关键词 interconnect bus dynamic power wire ordering wire spacing nanometer scale process
原文传递
ANALYSIS OF THE TRANSMISSION PROPERTIES OF TAPERED MUTLICONDUCTOR INTERCONNECTING BUSES IN HIGH-SPEED INTEGRATED CIRCUITS
5
作者 王秉中 《Journal of Electronics(China)》 1994年第1期22-27,共6页
Analysis approach and formulas for the transmission properties of uniform multicon-ductor interconnecting buses in high-speed integrated circuits are presented in this article. And further, by using a network approach... Analysis approach and formulas for the transmission properties of uniform multicon-ductor interconnecting buses in high-speed integrated circuits are presented in this article. And further, by using a network approach, a tapered bus system can be analyzed as a set of cascaded uniform buses with slightly different strip widths. Obtained results are in good agreement with the experimental data. 展开更多
关键词 High SPEED integrated circuit INTERCONNECTION TRANSMISSION LINES Network SCATTERING PARAMETER
在线阅读 下载PDF
Cantilever beam-based piezoelectric micromachined ultrasonic transducer with post processing soft interconnecting strategy for in-air rangefinding
6
作者 Yan Wang Peng Chen +2 位作者 Junning Zhang Zihan Li Hongbin Yu 《Microsystems & Nanoengineering》 2025年第3期181-194,共14页
Despite of good performance immunity to stress and high transmitting/receiving sensitivity advantages,the fabrication imperfection induced asynchronous vibration and the resultant prolonged ring-down tail severely lim... Despite of good performance immunity to stress and high transmitting/receiving sensitivity advantages,the fabrication imperfection induced asynchronous vibration and the resultant prolonged ring-down tail severely limit the potential of the cantilever beam-based piezoelectric micromachined ultrasonic transducer(PMUT)in pulse-echo applications as transceiver.To address this issue,a novel post processing soft interconnecting strategy is presented.In this case,specific reservoir structure is intentionally integrated into the cantilever-beam based PMUT design,under the assistance of which the liquid PDMS can be accurately applied and spontaneously driven to seal the air gaps between the already released cantilever beams via the capillary effect.After curing,the PDMS will be transformed from liquid to solid and serve as soft interconnecting spring between adjacent cantilever beams so as to force them to vibrate in synchronous mode.At the same time,this treatment does not change the existing fabrication process and has little effect on the original PMUT performance.From both of the mechanical and acoustic response measurement results,effective suppression for the asynchronous vibration and significant reduction of the ring-down tail have been successfully demonstrated for the treated PMUT device.In the subsequent pulse-echo rangefinding experiment,a distance detection range covering from 270.8 mm to 3.8 m with a divergence angle close to 170°has been achieved when it is driven at resonant frequency of 69.2 kHz with 40 Vpp,40-cycles sinusoidal signal.Given the simple yet effective treatment,the proposed strategy shows great prospective in developing high performance PMUT for in-air rangefinding applications. 展开更多
关键词 post processing ring down tail reservoir structure intentionally integr cantilever beam post processing soft interconnecting strategy soft interconnecting air rangefinding piezoelectric micromachined ultrasonic transducer
原文传递
Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo 被引量:15
7
作者 Jinyu Li Wei Zhi +5 位作者 Taotao Xu Feng Shi Ke Duan JianxinWang Yandong Mu Jie Weng 《Regenerative Biomaterials》 SCIE 2016年第5期285-297,共13页
The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes.In ord... The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes.In order to accurately reveal the relationship between ectopic osteogenesis and macro-pore sizes in dorsal muscle and abdominal cavities of dogs,hydroxyapatite(HA)scaffolds with three different macro-pore sizes of 500–650,750–900 and 1100–1250 mm were prepared via sugar spheres-leaching process,which also had similar interconnecting structure determined by keeping the d/s ratio of interconnecting window diameter to macro-pore size constant.The permeability test showed that the seepage flow of fluid through the porous scaffolds increased with the increase of macro-pore sizes.The cell growth in three scaffolds was not affected by the macro-pore sizes.The in vivo ectopic implantation results indicated that the macro-pore sizes of HA scaffolds with the similar interconnecting structure have impact not only the speed of osteogenesis and angiogenesis but also the space distribution of newly formed bone.The scaffold with macro-pore sizes of 750–900 mm exhibited much faster angiogenesis and osteogenesis,and much more uniformly distribution of new bone than those with othermacro-pore sizes.This work illustrates the importance of a suitable macro-pore sizes in HA scaffolds with the similar interconnecting structure which provides the environment for ectopic osteogenesis and angiogenesis. 展开更多
关键词 hydroxyapatite scaffolds similar interconnecting structure OSTEOGENESIS ANGIOGENESIS
原文传递
Recent progress of interconnecting layer for tandem organic solar cells 被引量:3
8
作者 Shunmian Lu Dan Ouyang Wallace C.H. Choy 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第4期460-471,共12页
This paper has reviewed:(1) the two unique advantages of tandem organic solar cells(OSCs) compared to single OSCs;(2) the challengings as well as strategies to develop qualified interconnecting layer(ICL) for tandem O... This paper has reviewed:(1) the two unique advantages of tandem organic solar cells(OSCs) compared to single OSCs;(2) the challengings as well as strategies to develop qualified interconnecting layer(ICL) for tandem OSCs.More specifically,firstly,the two key advantages unique to tandem OSCs as compared to single OSCs,namely minimizing sub-bandgap transmission and thermalization loss as well as realizing optical thick and electrical thin structures,have been discussed.Secondly,the ICL,as one of the most challenging issue in tandem OSCs that needs to fulfill the optical,electrical and mechanical requirements simultaneously to realize a qualified ICL has been reviewed.As one of the most challenging requirement among the three,the electrical requirement and its corresponding three different solving strategies have been discussed in detail,revealing a bright future for developing a general strategy to realizing qualified ICL composed of different hole transporting layer(HTL) and electron transporting layer(ETL). 展开更多
关键词 TANDEM organic solar cell interconnecting layer
原文传递
Manipulating Nanowires in Interconnecting Layer for Efficient Tandem Organic Photovoltaics
9
作者 Yanjie Tang Jiaming Fu +9 位作者 Hao Li Du Hyeon Ryu Won Suk Shin Jianqi Zhang Yi Yang Yiming Yang Deyuan Li Zhong Zheng Shaoqing Zhang Jianhui Hou 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第4期377-383,共7页
Owing to the function of manipulating light absorption distribution,tandem organic solar cells containing multiple sub-cells exhibit high power conversion efficiencies.However,there is a substantial challenge in preci... Owing to the function of manipulating light absorption distribution,tandem organic solar cells containing multiple sub-cells exhibit high power conversion efficiencies.However,there is a substantial challenge in precisely controlling the inter-subcells carrier migration which determines the balance of charge transport across the entire device.The conductivity of"nanowires"-like conducting channel in interconnecting layer between sub-cells should be improved which calls for fine engineering on the morphology of polyelectrolyte in interconnecting layer.Here,we develop a simple method to effectively manipulating the domains of conductive components in commercially available polyelectrolyte PEDOT:PSs.The use of poor solvent could effectively modify the configuration of polystyrene sulfonic acid and thus the space for conductive components.Based on our strategy,the insulated shells wrapping conductive domains are thinned and the efficiencies of tandem organic solar cells are improved.We believe our method might provide guidance for the manufacture of tandem organic solar cells. 展开更多
关键词 Tandem organic solar cells Power conversion efficiency interconnecting layer Tunneling junction Interfacial layers Conformationanalysis π-πstacking Donor-acceptorsystems
原文传递
Converging assemblies:A putative building block for brain function and for interfacing with the brain
10
作者 Eran Stark Lidor Spivak 《Neural Regeneration Research》 2026年第3期1124-1125,共2页
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ... The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses. 展开更多
关键词 cortical neuron INTERCONNECTIVITY neuronal networks functional modules dense interconnectivity braitenburg artificial systemsthese converging assemblies biological neuronal networks
暂未订购
Progress and prospects for all-perovskite tandem solar cells
11
作者 Qingyang Wu Jingwei Zhu Dewei Zhao 《Journal of Energy Chemistry》 2025年第4期90-96,共7页
All-perovskite tandem solar cells(TSCs)consist of a wide-bandgap(WBG,1.75-1.8 eV)top subcell and a low-bandgap(LBG,1.2-1.3 eV)bottom subcell,exhibit superior power conversion efficiencies(PCEs)compared to single-junct... All-perovskite tandem solar cells(TSCs)consist of a wide-bandgap(WBG,1.75-1.8 eV)top subcell and a low-bandgap(LBG,1.2-1.3 eV)bottom subcell,exhibit superior power conversion efficiencies(PCEs)compared to single-junction perovskite solar cells(PSCs).In addition,the advantages of lowtemperature solution preparation and low manufactu ring cost make the all-perovskite tandem solar cells widely concerned,and are considered to be one of the most potential next-generation high-performance thin film photovoltaic technologies.In this perspective,we briefly summarize the state-of-the-art advances in monolithic all-perovskite TSCs focusing on the following aspects:LBG perovskite bottom subcells,WBG perovskite top subcells,and interconnecting layers(ICLs).We then discuss the primary strategies to improve their performa nce and finally highlight the perspective regarding the achievement of efficient and stable all-perovskite tandems. 展开更多
关键词 Wide-bandgap perovskite top subcell Low-bandgap perovskite bottom subcell interconnecting layer All-perovskite tandem solar cell PROGRESS PROSPECT
在线阅读 下载PDF
Design of high-speed MUTC-PD with electric field regulation layer 被引量:1
12
作者 XU Jian-bo LIU Kai +4 位作者 DONG Xiao-wen DUAN Xiao-feng HUANG Yong-qing WANG Qi REN Xiao-min 《中国光学(中英文)》 北大核心 2025年第2期393-400,共8页
This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field re... This paper proposes a novel modified uni-traveling-carrier photodiode(MUTC-PD)featuring an electric field regulation layer:a p-type doped thin layer inserted behind the PD’s n-doped cliff layer.This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer,allowing photo-generated electrons to transit at peak drift velocity,but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’saturated transit performance.Additionally,the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics.The electron’s peak drift velocity compensates for the lost transit time.Thus improving the 3 dB bandwidth of the PD’s photo response.Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W,making it suitable for 100 Gbit/s optical receivers. 展开更多
关键词 peak electron drift velocity transit performance MUTC-PD optical fiber communication optical interconnect
在线阅读 下载PDF
High-entropy materials for solid oxide cells:Synthesis,applications,and prospects 被引量:2
13
作者 Ming Xiao Zuoqing Liu +8 位作者 Haosong Di Yuesheng Bai Guangming Yang Dmitry A.Medvedev Zhixin Luo Wei Wang Wei Zhou Ran Ran Zongping Shao 《Journal of Energy Chemistry》 2025年第5期268-296,共29页
As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise beca... As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise because of their high energy conversion efficiency and wide range of applications.Highentropy materials(HEMs),a novel class of materials comprising several principal elements,have attracted significant interest within the materials science and energy sectors.Their distinctive structural features and adaptable functional properties offer immense potential for innovation across various applications.This review systematically covers the basic concepts,crystal structures,element selection,and major synthesis strategies of HEMs,and explores in detail the specific applications of these materials in SOCs,including its potential as air electrodes,fuel electrodes,electrolytes,and interconnects(including barrier coatings).By analyzing existing studies,this review reveals the significant advantages of HEMs in enhancing the performance,anti-poisoning,and stability of SOCs;highlights the key areas and challenges for future research;and looks into possible future directions. 展开更多
关键词 Solid oxide cells High-entropy materials Air electrodes Fuel electrodes Electrolytes Interconnects
在线阅读 下载PDF
Call for Papers─Feature Topic Vol.23,No.8,2026 Industrial Intelligence and Secure Interconnection
14
《China Communications》 2025年第11期I0002-I0002,共1页
Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function ... Industrial intelligence and secure interconnection serve as the foundational platform and critical information infrastructure for new industrialization,carrying significant strategic importance.They not only function as the core engine driving the transformation and upgrading of the manufacturing sector and ensuring stable socioeconomic operation but are also vital to enhancing national technological competitiveness and safeguarding industrial security. 展开更多
关键词 manufacturing sector industrial intelligence industrial intelligence secure interconnection new industrialization enhancing national technological competitiveness critical information infrastructure foundational platform secure interconnection
在线阅读 下载PDF
A Journey of Shared Aspirations
15
作者 EPHETA SANGALA WALLSTONE 《ChinAfrica》 2025年第8期58-59,共2页
A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing rel... A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing relationship between Malawi and China-two geographically and historically distinct countries that are finding powerful common ground and shared aspirations. 展开更多
关键词 chinas influence DIPLOMACY JOURNEY shared growth common ground interconnected world shared aspirations INNOVATION
原文传递
Schemes comparation of layered and continuous solution mining in bedded salt formations by horizontal interconnected wells
16
作者 Hao Zhang Guimin Zhang +3 位作者 Kai Liu Xinghui Fu Yinping Li Yuxuan Liu 《International Journal of Mining Science and Technology》 2025年第12期2213-2229,共17页
Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining prac... Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining practices have adopted the layered solution mining approach,inspired by coal mining techniques.However,this approach fails to account for the unique challenges of salt solution mining.Practical implementation is inefficient,costs escalate post-construction,and cavern geometry is constrained by salt beds thickness.Additionally,resource loss in abandoned beds and stability risks in adjacent mining zones remain unresolved.This study investigates mining scheme selection for low-grade salt deposits in Huai'an Salt Basin,introducing a continuous solution mining method that traverses multiple interlayers.Through comprehensive analysis of plastic deformation in caverns and surrounding rock,volume shrinkage rates,and economic costs comparing continuous and layered solution mining approaches,the results demonstrate that:(1)In the layered solution mining with horizontal interconnected wells scheme,plastic deformation zones propagate unevenly,posing interlayer connectivity risks.Concurrently,roof subsidence and floor heave destabilize the structure;(2)the continuous solution mining with horizontal interconnected wells scheme reduces plastic deformation zones to 3.4%of cavern volume,with volumetric shrinkage below 17%,markedly improving stability;(3)Economically,the continuous solution mining scheme generates caverns 2.43 times larger than the layered solution mining,slashing unit volume costs to 41.1%while enhancing resource recovery and long-term viability.The continuous method demonstrates distinct economic advantages and achieves higher resource utilization efficiency in solution mining compared to layered mining.Furthermore,its superior cavern stability presents strong potential for large-scale implementation. 展开更多
关键词 Salt mine Layered solution mining Continuous solution mining Horizontal interconnected well Stability
在线阅读 下载PDF
Broadband PZT electro-optic modulator
17
作者 Peng Wang Hongyan Yu +9 位作者 Yujun Xie Jie Peng Chengyang Zhong Ang Li Zehao Guan Jungan Wang Chen Yang Yu Han Feng Qiu Ming Li 《Journal of Semiconductors》 2025年第3期8-11,共4页
As the demand for computing power in data centers continues to grow, balancing data transmitting speed and energy efficiency has emerged as a critical challenge. Highbandwidth, low-power interconnection schemes are in... As the demand for computing power in data centers continues to grow, balancing data transmitting speed and energy efficiency has emerged as a critical challenge. Highbandwidth, low-power interconnection schemes are increasingly recognized as core requirements for next-generation intelligent computing center designs^([1, 2]). For short-range optical interconnections of intra-chip and inter-chip—typically covering tens of meters or less—microring resonant modulators (MRM) are emerging as an ideal solution. 展开更多
关键词 COMPUTING INTERCONNECTION MODULATOR
在线阅读 下载PDF
Chongqing:Majestic Mountain City
18
《China Report ASEAN》 2025年第8期24-25,共2页
Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the bir... Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the birthplace of Bayu culture,an influential ancient culture native to the Chongqing area,the city boasts a recorded history of more than 3,000 years.As a crucial strategic hub in the development of China’s western regions,Chongqing occupies a pivotal position in the interconnected networks fostered by the Belt and Road Initiative and the Yangtze River Economic Belt.Leveraging the golden waterway of the Yangtze River,the China-Europe Railway Express(Chengdu-Chongqing),and the New International Land-Sea Trade Corridor,Chongqing has emerged as a crucial gateway for China’s opening-up. 展开更多
关键词 river city interconnected networks mountain city strategic hub Bayu culture bayu culturean ancient culture Belt Road Initiative
在线阅读 下载PDF
Effects of composition ratio of TiCu precursor on dealloying behavior in molten Mg and microstructural characteristics of Mg-Ti composites
19
作者 Jee Eun Jang Bo Hyun Park +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 2025年第6期2784-2799,共16页
Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.T... Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing. 展开更多
关键词 Liquid metal dealloying Precursor composition Mg-Ti composite 3D interconnected structure HARDNESS
在线阅读 下载PDF
3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics
20
作者 Chengjun Zhang Qing Yang +5 位作者 Haoyu Li Zexiang Luo Yu Lu Jialiang Zhang Cheng Li Feng Chen 《International Journal of Extreme Manufacturing》 2025年第3期337-348,共12页
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human... High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics. 展开更多
关键词 3D soft electronics liquid metal high-density interconnection femtosecond laser direct writing supermetalphobicity
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部