Contemporary intervention strategies in Latin America have been mainly based on adaptability and informal interconnection processes based on observing morphogenic evolution in informal settlements.These behaviours wer...Contemporary intervention strategies in Latin America have been mainly based on adaptability and informal interconnection processes based on observing morphogenic evolution in informal settlements.These behaviours were flrst explored by John F.C.Turner in Peru in the 1960s and Jorge Mario Jáuregui since the 2000s,subsequently used as necessary project tools in planning informal contexts.However,empirical evidence reveals that both processes have been approached individually in the interventions,showing a disconnection in the scale produced and in their complementarity of action.The objective of the study is to identify factors that originate the connection and disconnection of the processes of adaptability and interconnection between the intervention and the informal settlement,establishing a hypothesis that the disconnection produced between both processes reduces the effectiveness of the intervention to the detriment of the informal settlement.As a method,variables involved in these processes are analysed in representative models from the United States,Chile,Brazil,Colombia,and South Africa from a formal(state and private programs)and informal(evolutionary phases)perspective.As a result,the research provides new insights into the insertion of adaptability and interconnectedness processes endowed with greater effectiveness in interventions on informal settlements.展开更多
A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing rel...A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing relationship between Malawi and China-two geographically and historically distinct countries that are finding powerful common ground and shared aspirations.展开更多
Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the bir...Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the birthplace of Bayu culture,an influential ancient culture native to the Chongqing area,the city boasts a recorded history of more than 3,000 years.As a crucial strategic hub in the development of China’s western regions,Chongqing occupies a pivotal position in the interconnected networks fostered by the Belt and Road Initiative and the Yangtze River Economic Belt.Leveraging the golden waterway of the Yangtze River,the China-Europe Railway Express(Chengdu-Chongqing),and the New International Land-Sea Trade Corridor,Chongqing has emerged as a crucial gateway for China’s opening-up.展开更多
Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.T...Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing.展开更多
In June 2024,the 78th session of the United Nations General Assembly unanimously adopted a resolution proposed by China,designating June 10 of each year as the International Day for Dialogue Among Civilizations.This i...In June 2024,the 78th session of the United Nations General Assembly unanimously adopted a resolution proposed by China,designating June 10 of each year as the International Day for Dialogue Among Civilizations.This initiative aimed to deepen global appreciation for the value of civilizational diversity,promote dialogue and mutual respect,and advance the construction of a more harmonious and interconnected world.展开更多
The competence to distinguish points of view is an essential skill in today’s interconnected and information-rich world.Here’s why it is so important:区分观点的能力是当今互联互通、信息丰富的世界中一项必不可少的技能...The competence to distinguish points of view is an essential skill in today’s interconnected and information-rich world.Here’s why it is so important:区分观点的能力是当今互联互通、信息丰富的世界中一项必不可少的技能。以下是它如此重要的原因。展开更多
This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multipl...This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.展开更多
The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater...The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater basins in Jordan are vertically and horizontally interconnected stratification in different water quality horizons with generally increasing water salinity with the depth is observed. Many officials and planners advocate the extraction of deep salty and brackish water to be desalinated and used in household, industrial, and agricultural uses. In this article, the quality of the groundwater in the different deep aquifers and areas in Jordan is discussed. The results of this study show that the consequences of the deep groundwater exploitation are not restricted to depletion of the deep aquifers but also that the overlying fresh groundwater will, due to vertical and horizontal interconnectedness of the different aquifers, percolate down to replace the extracted deep groundwater. This will cause the down-percolating fresh groundwater to become salinized in the deep saline aquifers, which means that extracting the deep brackish and saline groundwater is not only an emptying process of the deep groundwater but also it is an emptying process of the fresh groundwater overlying them. The results allow to conclude that any extraction of the deep groundwater in areas lying to the north of Ras en Naqab Escarpment will have damaging impacts on the fresh groundwater in the overlying fresh groundwater aquifers. This article strongly advises not to extract the deep brackish and saline groundwater, but to conserve that groundwater as a base supporting the overlying fresh groundwater resources, and that will help in protecting the thermal mineralized water springs used in spas originating from these deep aquifers. The increasing water needs of the country can be covered by the desalination of seawater at Aqaba, which is the only viable option for Jordan at present and in the coming decades.展开更多
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical...Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.展开更多
Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic c...Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic conductivity and limited ionic diffusion kinetics. Herein, taking Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)(NVMP) as an example, a reinforced concrete-like hierarchical and porous hybrid(NVMP@C@3DPG) built from 3D graphene(“rebar”) frameworks and in situ generated carbon coated NVMP(“concrete”) has been developed by a facile polymer assisted self-assembly and subsequent solid-state method. Such hybrids deliver superior rate capability(73.9 m Ah/g up to 20 C) and excellent cycling stability in a wide temperature range with a high specific capacity of 88.4 m Ah/g after 5000 cycles at 15 C at room temperature, and a high capacity retention of 97.1% after 500 cycles at 1 C(-20 ℃), and maintaining a high reversible capacity of 110.3 m Ah/g in full cell. This work offers a facile and efficient strategy to develop advanced polyanionic cathodes with high-efficiency utilization and 3D electron/ion transport systems.展开更多
Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection method...Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.展开更多
The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control p...The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve co...This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.展开更多
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, su...Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, such groundwater is non-renewable and is found in aquifers underlying fresh renewable groundwater bodies building the base support for them. The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes. In this article, the geologic set-up of the aquifer series underlying the different parts of the country is outlined to illustrate that all such aquifers extending from ground surface to the impermeable granitic Basement Complex are, in the majority of areas, directly or indirectly interconnected and that extractions from any aquifer, shallow or deep, are effectively taken from the same stock of the groundwater body. Hence, it is concluded that advocating the extraction of the deep salty or brackish groundwater is quasi extracting the same amount of groundwater from the overlying, shallower fresh water aquifers. The deep groundwater issues along the eastern escarpment of the Jordan Rift Valley and is used in household supplies, in irrigation and in spas as curative agent. In addition, the intended use of the deep groundwater to be extracted according to the suggested policy in household supplies requiring desalination, which is a costly unnecessary process accompanied with rigorous environmental ramifications of disposing off the desalination brines.展开更多
Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray...Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mod...A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.展开更多
Discussions about justice in cross-cultural context give rise to assorted theories. In this paper, issues surrounding communalism as a theory of justice in African culture will be examined with a view to show that its...Discussions about justice in cross-cultural context give rise to assorted theories. In this paper, issues surrounding communalism as a theory of justice in African culture will be examined with a view to show that its principles of care and fellow feeling could be worked out to address the problem of alienation from society characterizing some members of the contemporary African society. Recognition of the social dynamics of human society and relationships is of essence to communalism. As a theory of justice and a world view, communalism describes the human being as "being with others" and what that should be. The expression, "I am because we are, and because we are, I am" is the driving force of the communalistic society. Such a society is characterized by care, love, belongingness, solidarity, and interconnectedness. The aim of this paper is to highlight the manifestations of the idea of justice in communalism using leadership or governance, consensus in decision making, moral rules, punishment for wrong doing, and the equitable distribution of resources. It also aims to show that the communalist idea of justice is integrationist in outlook being constitutive of political and socio-economic elements, which the individual enjoys in practical terms as opposed to the paper rights, which citizens in much of the contemporary societies enjoy. The paper notes that drastic changes have occurred in the socio-economic relations within African societies as a consequence of acculturation subsequent to European colonization and these have had far reaching consequences.展开更多
文摘Contemporary intervention strategies in Latin America have been mainly based on adaptability and informal interconnection processes based on observing morphogenic evolution in informal settlements.These behaviours were flrst explored by John F.C.Turner in Peru in the 1960s and Jorge Mario Jáuregui since the 2000s,subsequently used as necessary project tools in planning informal contexts.However,empirical evidence reveals that both processes have been approached individually in the interventions,showing a disconnection in the scale produced and in their complementarity of action.The objective of the study is to identify factors that originate the connection and disconnection of the processes of adaptability and interconnection between the intervention and the informal settlement,establishing a hypothesis that the disconnection produced between both processes reduces the effectiveness of the intervention to the detriment of the informal settlement.As a method,variables involved in these processes are analysed in representative models from the United States,Chile,Brazil,Colombia,and South Africa from a formal(state and private programs)and informal(evolutionary phases)perspective.As a result,the research provides new insights into the insertion of adaptability and interconnectedness processes endowed with greater effectiveness in interventions on informal settlements.
文摘A Malawian perspective on China’s influence,innovation and shared growth In today’s interconnected world,diplomacy,trade,and culture are drawing nations once thought distant closer.A case in point is the growing relationship between Malawi and China-two geographically and historically distinct countries that are finding powerful common ground and shared aspirations.
文摘Chongqing,the only municipality directly under the central government in China’s central and western regions,is distinguished by its unique identity as both a“mountain city”and a“river city.”Recognized as the birthplace of Bayu culture,an influential ancient culture native to the Chongqing area,the city boasts a recorded history of more than 3,000 years.As a crucial strategic hub in the development of China’s western regions,Chongqing occupies a pivotal position in the interconnected networks fostered by the Belt and Road Initiative and the Yangtze River Economic Belt.Leveraging the golden waterway of the Yangtze River,the China-Europe Railway Express(Chengdu-Chongqing),and the New International Land-Sea Trade Corridor,Chongqing has emerged as a crucial gateway for China’s opening-up.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(Nos.RS-2024–00351052 and RS-2024–00450561)。
文摘Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing.
文摘In June 2024,the 78th session of the United Nations General Assembly unanimously adopted a resolution proposed by China,designating June 10 of each year as the International Day for Dialogue Among Civilizations.This initiative aimed to deepen global appreciation for the value of civilizational diversity,promote dialogue and mutual respect,and advance the construction of a more harmonious and interconnected world.
文摘The competence to distinguish points of view is an essential skill in today’s interconnected and information-rich world.Here’s why it is so important:区分观点的能力是当今互联互通、信息丰富的世界中一项必不可少的技能。以下是它如此重要的原因。
文摘This study presents the use of an innovative population-based algorithm called the Sine Cosine Algorithm and its metaheuristic form,Quasi Oppositional Sine Cosine Algorithm,to automatic generation control of a multiple-source-based interconnected power system that consists of thermal,gas,and hydro power plants.The Proportional-Integral-Derivative controller,which is utilized for automated generation control in an interconnected hybrid power systemwith aDClink connecting two regions,has been tuned using the proposed optimization technique.An Electric Vehicle is taken into consideration only as an electrical load.The Quasi Oppositional Sine Cosinemethod’s performance and efficacy have been compared to the Sine Cosine Algorithm and optimal output feedback controller tuning performance.Applying the QOSCA optimization technique,which has only been shown in this study in the context of an LFC research thus far,makes this paper unique.The main objective has been used to assess and compare the dynamic performances of the recommended controller along with QOSCA optimisation technic.The resilience of the controller is examined using two different system parameters:B(frequency bias parameter)and R(governor speed regulation).The sensitivity analysis results demonstrate the high reliability of the QOSCA algorithm-based controller.Once optimal controller gains are established for nominal conditions,step load perturbations up to±10%&±25%in the nominal values of the systemparameters and operational load condition do not require adjustment of the controller.Ultimately,a scenario is examined whereby EVs are used for area 1,and a single PID controller is used rather than three.
文摘The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater basins in Jordan are vertically and horizontally interconnected stratification in different water quality horizons with generally increasing water salinity with the depth is observed. Many officials and planners advocate the extraction of deep salty and brackish water to be desalinated and used in household, industrial, and agricultural uses. In this article, the quality of the groundwater in the different deep aquifers and areas in Jordan is discussed. The results of this study show that the consequences of the deep groundwater exploitation are not restricted to depletion of the deep aquifers but also that the overlying fresh groundwater will, due to vertical and horizontal interconnectedness of the different aquifers, percolate down to replace the extracted deep groundwater. This will cause the down-percolating fresh groundwater to become salinized in the deep saline aquifers, which means that extracting the deep brackish and saline groundwater is not only an emptying process of the deep groundwater but also it is an emptying process of the fresh groundwater overlying them. The results allow to conclude that any extraction of the deep groundwater in areas lying to the north of Ras en Naqab Escarpment will have damaging impacts on the fresh groundwater in the overlying fresh groundwater aquifers. This article strongly advises not to extract the deep brackish and saline groundwater, but to conserve that groundwater as a base supporting the overlying fresh groundwater resources, and that will help in protecting the thermal mineralized water springs used in spas originating from these deep aquifers. The increasing water needs of the country can be covered by the desalination of seawater at Aqaba, which is the only viable option for Jordan at present and in the coming decades.
基金The authors acknowledge support from the German Research Foundation(DFG:LE 2249/5-1)the Sino-German Center for Research Promotion(GZ1579)+1 种基金Yunnan Fundamental Research Projects(202201AW070014)Jiajia Qiu and Yu Duan appreciate support from the China Scholarship Council(No.201908530218&202206990027).
文摘Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.
基金financially supported by the National Natural Science Foundation of China (No.52072119)Natural Science Foundation of Hunan Province (No.2023JJ50015)+2 种基金the 111 Project (No.D20015)the Australian Research Council (No.DP230100198)the Echidna at the Australian centre for Neutron Scattering under Merit Programs (beamtime: M13623)。
文摘Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic conductivity and limited ionic diffusion kinetics. Herein, taking Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)(NVMP) as an example, a reinforced concrete-like hierarchical and porous hybrid(NVMP@C@3DPG) built from 3D graphene(“rebar”) frameworks and in situ generated carbon coated NVMP(“concrete”) has been developed by a facile polymer assisted self-assembly and subsequent solid-state method. Such hybrids deliver superior rate capability(73.9 m Ah/g up to 20 C) and excellent cycling stability in a wide temperature range with a high specific capacity of 88.4 m Ah/g after 5000 cycles at 15 C at room temperature, and a high capacity retention of 97.1% after 500 cycles at 1 C(-20 ℃), and maintaining a high reversible capacity of 110.3 m Ah/g in full cell. This work offers a facile and efficient strategy to develop advanced polyanionic cathodes with high-efficiency utilization and 3D electron/ion transport systems.
文摘Increasing Internet of Things(IoT)device connectivity makes botnet attacks more dangerous,carrying catastrophic hazards.As IoT botnets evolve,their dynamic and multifaceted nature hampers conventional detection methods.This paper proposes a risk assessment framework based on fuzzy logic and Particle Swarm Optimization(PSO)to address the risks associated with IoT botnets.Fuzzy logic addresses IoT threat uncertainties and ambiguities methodically.Fuzzy component settings are optimized using PSO to improve accuracy.The methodology allows for more complex thinking by transitioning from binary to continuous assessment.Instead of expert inputs,PSO data-driven tunes rules and membership functions.This study presents a complete IoT botnet risk assessment system.The methodology helps security teams allocate resources by categorizing threats as high,medium,or low severity.This study shows how CICIoT2023 can assess cyber risks.Our research has implications beyond detection,as it provides a proactive approach to risk management and promotes the development of more secure IoT environments.
基金supported by the National Natural Science Foundation of China(62273213,62073199,62103241)Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)+4 种基金Natural Science Foundation of Shandong Province(ZR2020MF095,ZR2021QF107)Taishan Scholarship Construction Engineeringthe Original Exploratory Program Project of National Natural Science Foundation of China(62250056)Major Basic Research of Natural Science Foundation of Shandong Province(ZR2021ZD14)High-level Talent Team Project of Qingdao West Coast New Area(RCTD-JC-2019-05)。
文摘The paper addresses the decentralized optimal control and stabilization problems for interconnected systems subject to asymmetric information.Compared with previous work,a closed-loop optimal solution to the control problem and sufficient and necessary conditions for the stabilization problem of the interconnected systems are given for the first time.The main challenge lies in three aspects:Firstly,the asymmetric information results in coupling between control and estimation and failure of the separation principle.Secondly,two extra unknown variables are generated by asymmetric information(different information filtration)when solving forward-backward stochastic difference equations.Thirdly,the existence of additive noise makes the study of mean-square boundedness an obstacle.The adopted technique is proving and assuming the linear form of controllers and establishing the equivalence between the two systems with and without additive noise.A dual-motor parallel drive system is presented to demonstrate the validity of the proposed algorithm.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
文摘This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon.
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.
文摘Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, such groundwater is non-renewable and is found in aquifers underlying fresh renewable groundwater bodies building the base support for them. The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes. In this article, the geologic set-up of the aquifer series underlying the different parts of the country is outlined to illustrate that all such aquifers extending from ground surface to the impermeable granitic Basement Complex are, in the majority of areas, directly or indirectly interconnected and that extractions from any aquifer, shallow or deep, are effectively taken from the same stock of the groundwater body. Hence, it is concluded that advocating the extraction of the deep salty or brackish groundwater is quasi extracting the same amount of groundwater from the overlying, shallower fresh water aquifers. The deep groundwater issues along the eastern escarpment of the Jordan Rift Valley and is used in household supplies, in irrigation and in spas as curative agent. In addition, the intended use of the deep groundwater to be extracted according to the suggested policy in household supplies requiring desalination, which is a costly unnecessary process accompanied with rigorous environmental ramifications of disposing off the desalination brines.
文摘Validating simulation model is one of the important aspects for modeling and simulation. Some methods of validating model are compared and analyzed. Several typical methods, such as TIC’s inequality coefficient, gray interconnected analysis, direct spectrum estimation, maximum entropy spectral estimation based on Burg or Marple, are chosen and programmed in C language. Some examples by using the program are given. The results show that the program is available and it is best to adopt multi methods for validating models.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
文摘A new type controller, fuzzy neural networks sliding mode controller (FNNSMC), is developed for a class of large scale systems with unknown bounds of high order interconnections and disturbances. Although sliding mode control is simple and insensitive to uncertainties and disturbances, there are two main problems in the sliding mode controller (SMC): control input chattering and the assumption of known bounds of uncertainties and disturbances. The FNNSMC, which incorporates the fuzzy neural networks (FNN) and the SMC, can eliminate the chattering by using the continuous output of the FNN to replace the discontinuous sign term in the SMC. The bounds of uncertainties and disturbances are also not required in the FNNSMC design. The simulation results show that the FNNSMC has more robustness than the SMC.
文摘Discussions about justice in cross-cultural context give rise to assorted theories. In this paper, issues surrounding communalism as a theory of justice in African culture will be examined with a view to show that its principles of care and fellow feeling could be worked out to address the problem of alienation from society characterizing some members of the contemporary African society. Recognition of the social dynamics of human society and relationships is of essence to communalism. As a theory of justice and a world view, communalism describes the human being as "being with others" and what that should be. The expression, "I am because we are, and because we are, I am" is the driving force of the communalistic society. Such a society is characterized by care, love, belongingness, solidarity, and interconnectedness. The aim of this paper is to highlight the manifestations of the idea of justice in communalism using leadership or governance, consensus in decision making, moral rules, punishment for wrong doing, and the equitable distribution of resources. It also aims to show that the communalist idea of justice is integrationist in outlook being constitutive of political and socio-economic elements, which the individual enjoys in practical terms as opposed to the paper rights, which citizens in much of the contemporary societies enjoy. The paper notes that drastic changes have occurred in the socio-economic relations within African societies as a consequence of acculturation subsequent to European colonization and these have had far reaching consequences.