The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their recept...The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their receptors,and downstream signal transducers,organize neural wiring to generate the complex architecture of the nervous system.It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system.This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system.Supporting this view,these pathways continue to regulate synaptic connectivity,plasticity,and remodeling,and overall brain homeostasis throughout adulthood.Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders.Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified,emerging evidence points to several common themes,including dysfunction in neurons,microglia,astrocytes,and endothelial cells,along with dysregulation of neuron-microglia-astrocyte,neuroimmune,and neurovascular interactions.In this review,we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions.For instance,recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation.We discuss the challenges ahead,along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases.Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions.Specifically,we examine the crosstalk between neuronal guidance signaling and TREM2,a master regulator of microglial function,in the context of pathogenic protein aggregates.It is well-established that age is a major risk factor for neurodegeneration.Future research should address how aging and neuronal guidance signaling interact to influence an individual’s susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.展开更多
Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in dis...Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in disease. Identification of bioactive materials capable of altering the abundances of these species both safely and effectively is a major goal in microbiome research. Many traditional Chinese medicines (TCMs) have been reported to affect the composition of the gut microbiome. Here, we summarize studies that have used TCMs to alter the gut microbiome and discuss the response relationship between TCMs and gut microbial species. Methods: We searched the PubMed, Web of Science, and Knowledge Network databases using the terms “traditional Chinese medicine,” “gut microbiome,” and specific system disease names (endocrine, immune, nervous, cardiovascular, and digestive). Studies were excluded if irrelevant or if the experimental procedures were unclear. Results: TCMs have been reported to affect a wide range of gut microbial taxa spanning major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobiota, Actinobacteria, and Fusobacteria. In all, 54 TCMs including compounds and extracts have been tested in rodents and 30 have been examined in human trials. Almost all studies have reported positive results in regulating the gut microbiome as well as modulating corresponding phenotypes, spanning diseases of the endocrine, immune, nervous, cardiovascular, and digestive systems. Gut species, including Akkermansia, Bacteroides, Fusobacterium, Faecalibacterium, and E. coli, were found to be regulated by 19 TCMs. A network was constructed to visualize the interactions between TCMs and these taxa. Conclusion: There exists a complex and close relationship between intestinal microflora and diseases. Sufficient experimental data and studies have proved that the imbalance of intestinal microflora affects health by mediating metabolism, immune regulation, inflammation and signal transduction. Many characteristic alterations of intestinal microflora are positively correlated with diseases, so intestinal microflora has become a potential risk index and treatment target for many diseases. Many TCMs affect the relative abundances of microbial species in the gut, and therefore may be useful for modulating the gut microbiome. This review provides a reference for prioritizing candidate TCMs from the enormous repertoire of such medicines to test which specific gut microbes are targeted.展开更多
Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in ...Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standa...In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standard of social knowledge level and competition intensifi es,more and more people have a goal to build a lifelong learning system, according to their own hobbies, work and the needs of the marketcompetition. Under this condition, the vocational education is becoming more and more essential. This paper integrates the VR and man-machineinteractive concept to propose the new education paradigm that is innovative.展开更多
基金supported by JSPS(KAKENHI:21K06205,23K06937,24K23419)AMED(to JYK,SaY,TM,SiY,YT,and NH)JYW had long been supported by the NIH.
文摘The nervous system processes a vast amount of information,performing computations that underlie perception,cognition,and behavior.During development,neuronal guidance genes,which encode extracellular cues,their receptors,and downstream signal transducers,organize neural wiring to generate the complex architecture of the nervous system.It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system.This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system.Supporting this view,these pathways continue to regulate synaptic connectivity,plasticity,and remodeling,and overall brain homeostasis throughout adulthood.Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders.Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified,emerging evidence points to several common themes,including dysfunction in neurons,microglia,astrocytes,and endothelial cells,along with dysregulation of neuron-microglia-astrocyte,neuroimmune,and neurovascular interactions.In this review,we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions.For instance,recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation.We discuss the challenges ahead,along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases.Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions.Specifically,we examine the crosstalk between neuronal guidance signaling and TREM2,a master regulator of microglial function,in the context of pathogenic protein aggregates.It is well-established that age is a major risk factor for neurodegeneration.Future research should address how aging and neuronal guidance signaling interact to influence an individual’s susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
基金funding by National Natural Science Foundation of China(No.82174492)National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion Project(N o.ZJJBGS2024002-1).
文摘Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in disease. Identification of bioactive materials capable of altering the abundances of these species both safely and effectively is a major goal in microbiome research. Many traditional Chinese medicines (TCMs) have been reported to affect the composition of the gut microbiome. Here, we summarize studies that have used TCMs to alter the gut microbiome and discuss the response relationship between TCMs and gut microbial species. Methods: We searched the PubMed, Web of Science, and Knowledge Network databases using the terms “traditional Chinese medicine,” “gut microbiome,” and specific system disease names (endocrine, immune, nervous, cardiovascular, and digestive). Studies were excluded if irrelevant or if the experimental procedures were unclear. Results: TCMs have been reported to affect a wide range of gut microbial taxa spanning major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobiota, Actinobacteria, and Fusobacteria. In all, 54 TCMs including compounds and extracts have been tested in rodents and 30 have been examined in human trials. Almost all studies have reported positive results in regulating the gut microbiome as well as modulating corresponding phenotypes, spanning diseases of the endocrine, immune, nervous, cardiovascular, and digestive systems. Gut species, including Akkermansia, Bacteroides, Fusobacterium, Faecalibacterium, and E. coli, were found to be regulated by 19 TCMs. A network was constructed to visualize the interactions between TCMs and these taxa. Conclusion: There exists a complex and close relationship between intestinal microflora and diseases. Sufficient experimental data and studies have proved that the imbalance of intestinal microflora affects health by mediating metabolism, immune regulation, inflammation and signal transduction. Many characteristic alterations of intestinal microflora are positively correlated with diseases, so intestinal microflora has become a potential risk index and treatment target for many diseases. Many TCMs affect the relative abundances of microbial species in the gut, and therefore may be useful for modulating the gut microbiome. This review provides a reference for prioritizing candidate TCMs from the enormous repertoire of such medicines to test which specific gut microbes are targeted.
基金Supported by the Development and Application Project of Ship CAE Software.
文摘Studies of wave-current interactions are vital for the safe design of structures.Regular waves in the presence of uniform,linear shear,and quadratic shear currents are explored by the High-Level Green-Naghdi model in this paper.The five-point central difference method is used for spatial discretization,and the fourth-order Adams predictor-corrector scheme is employed for marching in time.The domain-decomposition method is applied for the wave-current generation and absorption.The effects of currents on the wave profile and velocity field are examined under two conditions:the same velocity of currents at the still-water level and the constant flow volume of currents.Wave profiles and velocity fields demonstrate substantial differences in three types of currents owing to the diverse vertical distribution of current velocity and vorticity.Then,loads on small-scale vertical cylinders subjected to regular waves and three types of background currents with the same flow volume are investigated.The maximum load intensity and load fluctuation amplitude in uniform,linear shear,and quadratic shear currents increase sequentially.The stretched superposition method overestimates the maximum load intensity and load fluctuation amplitude in opposing currents and underestimates these values in following currents.The stretched superposition method obtains a poor approximation for strong nonlinear waves,particularly in the case of the opposing quadratic shear current.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘In this paper, we conduct research on the man-machine interactive environment VR and the applications on vocational educationand training under the perspective of interactivity. With the increase in the general standard of social knowledge level and competition intensifi es,more and more people have a goal to build a lifelong learning system, according to their own hobbies, work and the needs of the marketcompetition. Under this condition, the vocational education is becoming more and more essential. This paper integrates the VR and man-machineinteractive concept to propose the new education paradigm that is innovative.