期刊文献+
共找到488篇文章
< 1 2 25 >
每页显示 20 50 100
ADAPTIVE MULTIPLE MODEL FILTER USING IMM AND STF
1
作者 梁彦 潘泉 +1 位作者 周东华 张洪才 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期-,共5页
In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching th... In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching the fading factor based on the Least Squared Estimation. In hybrid estimation, the well known Interacting Multiple Model (IMM) Technique can model the change of the system modes. So one can design a new adaptive filter — SIMM. In this filter, our modified STF is a parameter adaptive part and IMM is a mode adaptive part. The benefit of the new filter is that the number of models can be reduced considerably. The simulations show that SIMM greatly improves accuracy of velocity and acceleration compared with the standard IMM to track the maneuvering target when 2 model conditional estimators are used in both filters. And the computation burden of SIMM increases only 6% compared with IMM. 展开更多
关键词 tracking maneuvering targets interacting multiple model adaptive filtering Kalman filtering strong tracking filter
在线阅读 下载PDF
An interacting multiple model-based two-stage Kalman filter for vehicle positioning 被引量:2
2
作者 徐启敏 李旭 +1 位作者 李斌 宋向辉 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期177-181,共5页
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(... To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF. 展开更多
关键词 interacting multiple modelimm two-stage filter uncertain noise vehicle positioning
在线阅读 下载PDF
Target Tracking Using the Interactive Multiple Model Method 被引量:6
3
作者 张劲松 杨位钦 胡士强 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期299-304,共6页
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of... Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method. 展开更多
关键词 interactive multiple model TRACKING maneuvering target Kalman filter
在线阅读 下载PDF
Reliable flight performance assessment of multirotor based on interacting multiple model particle filter and health degree 被引量:6
4
作者 Zhiyao ZHAO Peng YAO +3 位作者 Xiaoyi WANG Jiping XU Li WANG Jiabin YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期444-453,共10页
Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performanc... Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performance anomalies during the flight process. These failures and anomalies may result in mission interruptions, crashes, and even threats to the lives and property of human beings.Thus, the study of flight reliability problems of multirotors is conductive to the development of the drone industry and has theoretical significance and engineering value. This paper proposes a reliable flight performance assessment method of multirotors based on an Interacting Multiple Model Particle Filter(IMMPF) algorithm and health degree as the performance indicator. First, the multirotor is modeled by the Stochastic Hybrid System(SHS) model, and the problem of reliable flight performance assessment is formulated. In order to solve the problem, the IMMPF algorithm is presented to estimate the real-time probability distribution of hybrid state of the established SHS-based multirotor model, since it can decrease estimation errors compared with the standard interacting multiple model algorithm based on extended Kalman filter. Then, the reliable flight performance is assessed with health degree based on the estimation result. Finally, a case study of a multirotor suffering from sensor anomalies is presented to validate the effectiveness of the proposed method. 展开更多
关键词 HEALTH DEGREE INTERACTING multiple model Multirotor Particle filter Reliability and safety RELIABLE flight performance Unmanned AERIAL vehicles
原文传递
Using interacting multiple model particle filter to track airborne targets hidden in blind Doppler 被引量:16
5
作者 DU Shi-chuan SHI Zhi-guo +1 位作者 ZANG Wei CHEN Kang-sheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第8期1277-1282,共6页
In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intent... In airborne tracking,the blind Doppler makes the target undetectable,resulting in tracking difficulties. In this paper,we studied most possible blind-Doppler cases and summed them up into two types:targets' intentional tangential flying to radar and unintentional flying with large tangential speed. We proposed an interacting multiple model(IMM) particle filter which combines a constant velocity model and an acceleration model to handle maneuvering motions. We compared the IMM particle filter with a previous particle filter solution. Simulation results showed that the IMM particle filter outperforms the method in previous works in terms of tracking accuracy and continuity. 展开更多
关键词 Interacting multiple model Particle filter Blind Doppler
在线阅读 下载PDF
A solution of UAV localization problem using an interacting multiple nonlinear fuzzy adaptive H_(∞)models filter algorithm 被引量:3
6
作者 Elzoghby MOSTAFA Li FU +1 位作者 Arafa IBRAHIM.I. Arif USMAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第4期978-990,共13页
The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigat... The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigation scheme based on Interacting Multiple Nonlinear Fuzzy Adaptive H_∞ Models(IMM-NFAH_∞) filtering technique for UAV is presented. The proposed IMM-NFAH_∞ strategy switches between two different Nonlinear Fuzzy Adaptive H_∞(NFAH_∞) filters and each NFAH_∞ filter is based on different fuzzy logic inference systems. The newly proposed technique takes into consideration the high order Taylor series terms and adapts the nonlinear H_∞ filter based on different fuzzy inference systems via adaptive filter bounds(di),along with disturbance attenuation parameter c. Simulation analysis validates the performance of the proposed algorithm, and the comparison with nonlinear H_∞(NH_∞) filter and that with different NFAH_∞ filters demonstrate the effectiveness of UAV localization utilizing IMM-NFAH_∞ filter. 展开更多
关键词 Interacting multiple models Integrated navigation system Multi-mode estimation Nonlinear fuzzy adaptive filter Sensor data fusion UAV localization
原文传递
Multiple Model Filtering in the Presence of Gaussian Mixture Measurement Noises 被引量:1
7
作者 张永安 周荻 段广仁 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第4期229-234,共6页
A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance ... A simplified multiple model filter is developed for discrete-time systems inthe presence of Gaussian mixture measurement noises. Theoretical analysis proves that the proposedfilter has the same estimation performance as the interacting multiple model filter at the price ofless computational cost. Numerically robust implementation of the filter is presented to meetpractical applications. An example on bearings-only guidance demonstrates the effect of the proposedalgorithm. 展开更多
关键词 state estimation multiple model filter interacting multiple model Gaussianmixture target tracking bearings-only guidance
在线阅读 下载PDF
A novel maneuvering multi-target tracking algorithm based on multiple model particle filter in clutters 被引量:2
8
作者 胡振涛 Pan Quan Yang Feng 《High Technology Letters》 EI CAS 2011年第1期19-24,共6页
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi... To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method. 展开更多
关键词 maneuvering multi-target tracking multiple model particle filter interacting multiple model imm joint probabilistic data association
在线阅读 下载PDF
3D Human Motion Tracking by Using Interactive Multiple Models 被引量:1
9
作者 仝明磊 边后琴 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第4期420-428,共9页
Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution a... Of different model-based methods in vision based human tracking,many state of the art works focus on the stochastic optimization method to search in a very high dimensional space and try to find the optimal solution according to a proper likelihood function.Seldom works perform a framework of interactive multiple models (IMM) to track a human for challenging problems,such as uncertainty of motion styles,imprecise detection of feature points and ambiguity of joint location.This paper presents a two-layer filter framework based on IMM to track human motion.First,a method of model based points location is proposed to detect key feature points automatically and the filter in the first layer is performed to estimate the undetected points.Second,multiple models of motion are learned by the prior motion data with ridge regression and the IMM algorithm is used to estimate the quaternion vectors of joints rotation.Finally,experiments using real images sequences,simulation videos and 3D voxel data demonstrate that this human tracking framework is efficient. 展开更多
关键词 interactive multiple models(imm) human tracking automatic location occlusion prediction
原文传递
Tracking Algorithm Based on Improved Interacting Multiple Model Particle Filter
10
作者 Hailin Feng Juanli Guo 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第3期43-49,共7页
Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multi... Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multiple Model Particle Filter (IMMPF) algorithm is proposed for target tracking by introducing PF into Interactive Multiple Model (IMM).Different from the general method to select importance density function from PF, the particles are extracted from observation likelihood function within depending on observation noises.Observation noise is modelled, and the latest observation is fused, then the target can be effectively tracked.Finally, the optimized method is simulated with respect to bearings-only tracking of maneuvering target in a glint noise environment.Compared with the existing filtering algorithms, it turns out that the developed filtering algorithm is more efficient and closer to the real-time tracking requirement of high maneuvering targets. 展开更多
关键词 OBSERVATION noise interactive multiple model TARGET tracking PARTICLE filter
在线阅读 下载PDF
Maneuvering target tracking using threshold interacting multiple model algorithm
11
作者 徐迈 山秀明 徐保国 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期440-444,共5页
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i... To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy. 展开更多
关键词 maneuvering target tracking Kalman filter interacting multiple model imm threshold interacting multiple model (Timm
在线阅读 下载PDF
自适应IMM-UKF机动目标跟踪算法
12
作者 周晓 牟新刚 +2 位作者 柯文 苏盈 王丽 《系统工程与电子技术》 北大核心 2025年第8期2686-2695,共10页
针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适... 针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。 展开更多
关键词 目标跟踪 交互多模型 自适应 无迹卡尔曼滤波
在线阅读 下载PDF
基于ESKF与改进IMM算法的煤矿无人驾驶车辆井上-井下无缝定位
13
作者 王凯 鲍久圣 +5 位作者 吕玉寒 袁晓明 阴妍 王茂森 张可琨 葛世荣 《煤炭学报》 北大核心 2025年第10期4624-4639,共16页
随着我国煤矿智能化建设的不断推进,矿井辅助运输车辆向无人驾驶的方向发展已成为必然趋势。定位系统作为无人驾驶车辆的核心单元,单一定位方式及传统定位算法均难以满足煤矿辅运车辆从地面料场-斜井巷道-井下巷道-采掘工作面的全流程... 随着我国煤矿智能化建设的不断推进,矿井辅助运输车辆向无人驾驶的方向发展已成为必然趋势。定位系统作为无人驾驶车辆的核心单元,单一定位方式及传统定位算法均难以满足煤矿辅运车辆从地面料场-斜井巷道-井下巷道-采掘工作面的全流程、高精度、低时延定位要求。首先,根据煤矿辅运车辆的运行工况及巷道环境,设计了一种基于GNSS/UWB融合IMU的井上-井下无缝定位系统,提出采用模型切换延时(Model Switching Delay,D_(MS))作为无缝定位系统的性能评价指标;其次,针对UWB定位过程中的非视距(NLOS)误差问题,设计了UWB/IMU紧组合井下定位算法,并使用误差状态卡尔曼滤波(ESKF)对其进行滤波优化,仿真结果表明:ESKF优化算法平均定位误差为0.19 m,精度相较于单一UWB定位提高了56%;再次,分析了交互式多模型的影响因素,针对模型概率矩阵误差大影响无缝定位精度的问题,设计了一种基于ESKF与模糊自适应改进交互式多模型(FAIMM-ESKF)的矿井无缝定位算法,仿真结果表明:FAIMM-ESKF算法的定位精度比改进前提高了29%;最后,在实验室搭建模拟斜井巷道,利用无人驾驶试验车开展了无缝定位系统的定位与评估试验,结果表明:无缝定位系统在井上-井下交互区域的平均误差为0.131 m、最大误差为0.452 m,相较于传统算法分别降低了17.6%与14.8%;在整个试验过程中,FAIMM-ESKF算法的最大误差为0.498 m,平均误差为0.25 m,模型切换延时均值为35 ms,可满足煤矿辅运车辆全流程无人驾驶的定位精度与时延要求。研究结果可为推动建立煤矿井上-井下无缝衔接、精确高效的定位系统及定位算法提供理论参考,对于加快实现煤矿辅运车辆常态化无人驾驶、加速推进煤矿智能化建设具有重要理论意义和实用价值。 展开更多
关键词 井下无人驾驶 无缝定位 超宽带定位 ESKF滤波 交互式多模型
在线阅读 下载PDF
基于IMM-PFF的锂离子电池剩余寿命预测
14
作者 王帅 李义婷 +2 位作者 陈黎飞 苏小红 周寿斌 《电子学报》 北大核心 2025年第5期1520-1532,共13页
针对单一容量衰退模型在锂离子电池剩余寿命(Remaining Useful Life,RUL)预测中工况泛化能力不足的问题,本文提出一种基于交互式多模型粒子流滤波(Interactive Multiple Model Particle Flow Filter,IMM-PFF)的预测方法.通过粒子流滤波... 针对单一容量衰退模型在锂离子电池剩余寿命(Remaining Useful Life,RUL)预测中工况泛化能力不足的问题,本文提出一种基于交互式多模型粒子流滤波(Interactive Multiple Model Particle Flow Filter,IMM-PFF)的预测方法.通过粒子流滤波对指数、多项式和生物模型进行协同状态估计,并基于交互式多模型框架动态融合多模型预测结果,从而自适应匹配电池衰退的多阶段特性.将美国NASA、马里兰大学等不同工况的锂离子电池退化数据集划分为3个时期,对本文的方法进行验证.结果表明,相比单一模型粒子滤波方法,IMM-PFF的容量预测均方根误差和剩余寿命预测误差分别降低24.3%和4.5%,为复杂工况下的锂离子电池寿命预测提供了高精度、强鲁棒性的新思路. 展开更多
关键词 锂离子电池 剩余寿命 粒子流滤波 交互式多模型 状态估计
在线阅读 下载PDF
基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算
15
作者 吴华伟 何成泽 +3 位作者 洪强 周小高 李明金 顾亚娟 《储能科学与技术》 北大核心 2025年第10期3996-4008,共13页
荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散... 荷电状态(SOC)作为电动汽车剩余容量的表征参数,它的准确预估可以保障电动汽车的安全可靠性。针对复杂环境下电池SOC难以精确估算的问题,本工作基于动力电池特性构建了等效电路模型,并对电池模型状态方程进行了离散化的推演,在获得离散化状态方程的基础上,将金豺优化算法与遗忘因子递推最小二乘法(FFRLS)相结合提出了改进遗忘递推最小二乘法对电池模型进行了参数辨识。同时,联合交互式多模型无迹卡尔曼滤波(IMMUKF)算法对电池SOC进行估算,并在对常温和高温条件下的动态应力(DST)和联邦城市驾驶工况(FUDS)进行试验验证。结果表明,基于IFFRLS-IMMUKF的锂电池SOC估算方法,其平均绝对值误差在0.8%之内,对磷酸铁锂电池有较高的SOC估算精度。 展开更多
关键词 金豺优化算法 遗忘因子递推最小二乘法 交互式多模型无迹卡尔曼滤波 荷电状态
在线阅读 下载PDF
Ground Moving Target Tracking with VS-IMM Using Mean Shift Unscented Particle Filter 被引量:12
16
作者 GAO Caicai CHEN Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第5期622-630,共9页
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl... In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain. 展开更多
关键词 ground moving target tracking mean shift unscented particle filter hide model road information variable structure interacting multiple model
原文传递
GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update 被引量:19
17
作者 Houzeng HAN Jian WANG Mingyi DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期556-566,共11页
An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) s... An Extended Kalman Filter(EKF) is commonly used to fuse raw Global Navigation Satellite System(GNSS) measurements and Inertial Navigation System(INS) derived measurements. However, the Conventional EKF(CEKF) suffers the problem for which the uncertainty of the statistical properties to dynamic and measurement models will degrade the performance.In this research, an Adaptive Interacting Multiple Model(AIMM) filter is developed to enhance performance. The soft-switching property of Interacting Multiple Model(IMM) algorithm allows the adaptation between two levels of process noise, namely lower and upper bounds of the process noise. In particular, the Sage adaptive filtering is applied to adapt the measurement covariance on line. In addition, a classified measurement update strategy is utilized, which updates the pseudorange and Doppler observations sequentially. A field experiment was conducted to validate the proposed algorithm, the pseudorange and Doppler observations from Global Positioning System(GPS) and Bei Dou Navigation Satellite System(BDS) were post-processed in differential mode.The results indicate that decimeter-level positioning accuracy is achievable with AIMM for GPS/INS and GPS/BDS/INS configurations, and the position accuracy is improved by 35.8%, 34.3% and 33.9% for north, east and height components, respectively, compared to the CEKF counterpartfor GPS/BDS/INS. Degraded performance for BDS/INS is obtained due to the lower precision of BDS pseudorange observations. 展开更多
关键词 Adaptive filtering BeiDou navigation satellite system (BDS) Classified measurement update Global positioning system (GPS) Inertial navigation system (INS) Interacting multiple model Tightly coupled
原文传递
Modeling of UAV path planning based on IMM under POMDP framework 被引量:4
18
作者 YANG Qiming ZHANG Jiandong SHI Guoqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期545-554,共10页
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO... In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law. 展开更多
关键词 PARTIALLY OBSERVABLE MARKOV decision process (POMDP) interactive multiple model (imm) filtering path planning target tracking state transfer law
在线阅读 下载PDF
Data Fusion Algorithm for Multi-Sensor Dynamic System Based on Interacting Multiple Model 被引量:3
19
作者 陈志锋 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第3期265-272,共8页
This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorre... This paper presents a data fusion algorithm for dynamic system with multi-sensor and uncertain system models. The algorithm is mainly based on Kalman filter and interacting multiple model(IMM). It processes crosscorrelated sensor noises by using augmented fusion before model interacting. And eigenvalue decomposition is utilized to reduce calculation complexity and implement parallel computing. In simulation part, the feasibility of the algorithm was tested and verified, and the relationship between sensor number and the estimation precision was studied. Results show that simply increasing the number of sensor cannot always improve the performance of the estimation. Type and number of sensors should be optimized in practical applications. 展开更多
关键词 MULTI-SENSOR cross-correlated noises augmented fusion interacting multiple model(imm)
原文传递
An Algorithm of the Adaptive Grid and Fuzzy Interacting Multiple Model 被引量:4
20
作者 Yuan Zhang Chen Guo +2 位作者 Hai Hu Shubo Liu Junbo Chu 《Journal of Marine Science and Application》 2014年第3期340-345,共6页
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algo... This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications. 展开更多
关键词 maneuvering target tracking adaptive grid fuzzy logicinference variable structure multiple model adaptive grid andfuzzy interacting multiple model (AGFimm interacting multiplemodel imm
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部