This paper proposes 2.5-dimensional polymer micromachined insect-mimetic wings based on a fluid-structure interaction(FSI)design concept that enables natural deformations like cambering and pitching under fluid forces...This paper proposes 2.5-dimensional polymer micromachined insect-mimetic wings based on a fluid-structure interaction(FSI)design concept that enables natural deformations like cambering and pitching under fluid forces.Instead of directly employing an analysis for the FSI,an iterative structural Design Window(DW)search is used to reduce the computational cost significantly.A DW search using the iterative method refines the initial design by addressing fabrication challenges and tuning it to meet manufacturability constraints.The successful fabrication and demonstration of the final design solution for a wing demonstrates the effectiveness of the iterative DW search based on the FSI design concept.Furthermore,a pixel model is introduced to convert an unstructured to a structured mesh for the FSI analysis to further reduce the computational cost.The camber and pitching error between the unstructured and structured meshes is minimized to achieve insect-like aerodynamic performance by adjusting the elastic moduli of center and root veins.Finally,an analysis for the FSI is conducted,based on the parameters obtained from the pixel model to evaluate the flight performance on the basis of the lift,camber,and pitching required by an actual insect to maneuver and hover.展开更多
Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-...Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-protein interaction network. As a Divide-and-Conquer method, SQB consists of three steps: first, it divides the protein-protein interaction network into a number of Distance-2-Subgraphs;second, by combining top-down and branch-and-bound methods, SQB seeks quasi-bicliques from every Distance-2-Subgraph;third, all the redundant results are removed. We successfully applied our method on the Saccharomyces cerevisiae dataset and obtained 2754 distinct quasi-bicliques.展开更多
In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm base...In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm based on the combination of the emotional data field (EDF) and the ant colony search (ACS) strategy, called the EDF-ACS algorithm, is proposed. More specifically, the inter- relationship among the turn-based acoustic feature vectors of different labels are established by using the potential function in the EDF. To perform the spontaneous speech emotion recognition, the artificial colony is used to mimic the turn- based acoustic feature vectors. Then, the canonical ACS strategy is used to investigate the movement direction of each artificial ant in the EDF, which is regarded as the emotional label of the corresponding turn-based acoustic feature vector. The proposed EDF-ACS algorithm is evaluated on the continueous audio)'visual emotion challenge (AVEC) 2012 dataset, which contains the spontaneous, non-prototypical and unsegmented speech emotion data. The experimental results show that the proposed EDF-ACS algorithm outperforms the existing state-of-the-art algorithm in turn-based speech emotion recognition.展开更多
A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.T...A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.To ameliorate these issues,this work proposes a multi-layered GSA called MLGSA.Inspired by the two-layered structure of GSA,four layers consisting of population,iteration-best,personal-best and global-best layers are constructed.Hierarchical interactions among four layers are dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population.Performance comparison between MLGSA and nine existing GSA variants on twenty-nine CEC2017 test functions with low,medium and high dimensions demonstrates that MLGSA is the most competitive one.It is also compared with four particle swarm optimization variants to verify its excellent performance.Moreover,the analysis of hierarchical interactions is discussed to illustrate the influence of a complete hierarchy on its performance.The relationship between its population diversity and fitness diversity is analyzed to clarify its search performance.Its computational complexity is given to show its efficiency.Finally,it is applied to twenty-two CEC2011 real-world optimization problems to show its practicality.展开更多
Cocrystallization integrates the merits of high energy and insensitivity between energetic molecules to obtain energetics with satisfying performance.However,how to obtain supramolecular synthons accurately and rapidl...Cocrystallization integrates the merits of high energy and insensitivity between energetic molecules to obtain energetics with satisfying performance.However,how to obtain supramolecular synthons accurately and rapidly for predicting the structure and property of cocrystal remains a challenging problem.In this research,an efficient systematic search approach to predict CL-20/2,4-DNI cocrystal has been proposed that 2,4-DNI revolves around CL-20 with a stoichiometric ratio of 1:1 in accordance with the specified rules(hydrogen bond length:2.2-3.0 Å;search radius:6.5 Å;the number of hydrogen bond:1-3).Eight possible supramolecular synthons were obtained by combining quantum chemistry with molecular mechanics.Crystal structure prediction indicated that there are four structures in cocrystal,namely P21/c,P212121,Pbca and Pna21,and CL-20/2,4-DNI cocrystal is likely to be P21/c and the corresponding cell parameters are Z=4,a=8.28 Å,b=12.17 Å,c=20.42 Å,α=90°,β=96.94°,γ=90°,and ρ=1.9353 g/cm^(3).To further study the intermolecular interaction of CL-20/2,4-DNI cocrystal,a series of theoretical analyses were employed including intermolecular interaction energy,electrostatic potential(ESP),Density of State(DOS),Hirshfeld surface analysis.The C-H…O hydrogen bonds are demonstrated as the predominant driving forces in the cocrystal formation.The mechanical properties and detonation properties of CL-20/2,4-DNI cocrystal implies that the cocrystal shows better ductility and excellent detonation performances(9257 m/s,39.27 GPa)and can serve as a promising energetic material.Cocrystal structure predicted was compared with the experimental one to verify the accuracy of systematic search approach.There is a less than 8.8%error between experiment and predict results,indicating the systematic search approach has extremely high reliability and accuracy.The systematic search approach can be a new strategy to search supramolecular synthons and identify structures effectively and does have the potential to promote the development of energetic cocrystal by theoretical design.展开更多
This paper proposes a new approach for detecting human survivors in destructed environments using an autonomous robot. The proposed system uses a passive infrared sensor to detect the existence of living humans and a ...This paper proposes a new approach for detecting human survivors in destructed environments using an autonomous robot. The proposed system uses a passive infrared sensor to detect the existence of living humans and a low-cost camera to acquire snapshots of the scene. The images are fed into a feed-forward neural network, trained to detect the existence of a human body or part of it within an obstructed environment. This approach requires a relatively small number of images to be acquired and processed during the rescue operation, which considerably reduces the cost of image processing, data transmission, and power consumption. The results of the conducted experiments demonstrated that this system has the potential to achieve high performance in detecting living humans in obstructed environments relatively quickly and cost-effectively. The detection accuracy ranged between 79% and 91% depending on a number of factors such as the body position, the light intensity, and the relative color matching between the body and the surrounding environment.展开更多
Rice callus suspension culture(RCSC)has been shown to have anticancer activity based on cytotoxic activity on human colon and lung cancer cell lines.In the present study,the effect of RCSC on the expression of protein...Rice callus suspension culture(RCSC)has been shown to have anticancer activity based on cytotoxic activity on human colon and lung cancer cell lines.In the present study,the effect of RCSC on the expression of proteins in lung(A549)and colon(HT29)cancer cell lines was examined by using proteomics analysis.The protein-protein interaction study of differentially expressed proteins was done by using the Search Tool for the Retrieval of Interacting Genes(STRING),and the results showed that the proteins interacting with each other belong to different pathways.展开更多
基金supported by the Japan Society for the Promotion of Science KAKENHI under grant number 23H00475.
文摘This paper proposes 2.5-dimensional polymer micromachined insect-mimetic wings based on a fluid-structure interaction(FSI)design concept that enables natural deformations like cambering and pitching under fluid forces.Instead of directly employing an analysis for the FSI,an iterative structural Design Window(DW)search is used to reduce the computational cost significantly.A DW search using the iterative method refines the initial design by addressing fabrication challenges and tuning it to meet manufacturability constraints.The successful fabrication and demonstration of the final design solution for a wing demonstrates the effectiveness of the iterative DW search based on the FSI design concept.Furthermore,a pixel model is introduced to convert an unstructured to a structured mesh for the FSI analysis to further reduce the computational cost.The camber and pitching error between the unstructured and structured meshes is minimized to achieve insect-like aerodynamic performance by adjusting the elastic moduli of center and root veins.Finally,an analysis for the FSI is conducted,based on the parameters obtained from the pixel model to evaluate the flight performance on the basis of the lift,camber,and pitching required by an actual insect to maneuver and hover.
文摘Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-protein interaction network. As a Divide-and-Conquer method, SQB consists of three steps: first, it divides the protein-protein interaction network into a number of Distance-2-Subgraphs;second, by combining top-down and branch-and-bound methods, SQB seeks quasi-bicliques from every Distance-2-Subgraph;third, all the redundant results are removed. We successfully applied our method on the Saccharomyces cerevisiae dataset and obtained 2754 distinct quasi-bicliques.
基金The National Natural Science Foundation of China(No.61231002,61273266,61571106)the Foundation of the Department of Science and Technology of Guizhou Province(No.[2015]7637)
文摘In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm based on the combination of the emotional data field (EDF) and the ant colony search (ACS) strategy, called the EDF-ACS algorithm, is proposed. More specifically, the inter- relationship among the turn-based acoustic feature vectors of different labels are established by using the potential function in the EDF. To perform the spontaneous speech emotion recognition, the artificial colony is used to mimic the turn- based acoustic feature vectors. Then, the canonical ACS strategy is used to investigate the movement direction of each artificial ant in the EDF, which is regarded as the emotional label of the corresponding turn-based acoustic feature vector. The proposed EDF-ACS algorithm is evaluated on the continueous audio)'visual emotion challenge (AVEC) 2012 dataset, which contains the spontaneous, non-prototypical and unsegmented speech emotion data. The experimental results show that the proposed EDF-ACS algorithm outperforms the existing state-of-the-art algorithm in turn-based speech emotion recognition.
基金supported by National Natural Science Foundation of China(61872271,61673403,61873105,11972115)the Fundamental Research Funds for the Central Universities(22120190208)JSPS KAKENHI(JP17K12751)。
文摘A gravitational search algorithm(GSA)uses gravitational force among individuals to evolve population.Though GSA is an effective population-based algorithm,it exhibits low search performance and premature convergence.To ameliorate these issues,this work proposes a multi-layered GSA called MLGSA.Inspired by the two-layered structure of GSA,four layers consisting of population,iteration-best,personal-best and global-best layers are constructed.Hierarchical interactions among four layers are dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population.Performance comparison between MLGSA and nine existing GSA variants on twenty-nine CEC2017 test functions with low,medium and high dimensions demonstrates that MLGSA is the most competitive one.It is also compared with four particle swarm optimization variants to verify its excellent performance.Moreover,the analysis of hierarchical interactions is discussed to illustrate the influence of a complete hierarchy on its performance.The relationship between its population diversity and fitness diversity is analyzed to clarify its search performance.Its computational complexity is given to show its efficiency.Finally,it is applied to twenty-two CEC2011 real-world optimization problems to show its practicality.
基金the support of the National Natural Science Foundation of China(No.22005090)Beijing Institute of Technology Research Fund Program for Young Scholars+2 种基金the National Natural Science Foundation of China(No.11672040 and No.21801016)Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(STACPL120201B02)the State Key Laboratory of Explosion Science and Technology(No.YB2016-17)。
文摘Cocrystallization integrates the merits of high energy and insensitivity between energetic molecules to obtain energetics with satisfying performance.However,how to obtain supramolecular synthons accurately and rapidly for predicting the structure and property of cocrystal remains a challenging problem.In this research,an efficient systematic search approach to predict CL-20/2,4-DNI cocrystal has been proposed that 2,4-DNI revolves around CL-20 with a stoichiometric ratio of 1:1 in accordance with the specified rules(hydrogen bond length:2.2-3.0 Å;search radius:6.5 Å;the number of hydrogen bond:1-3).Eight possible supramolecular synthons were obtained by combining quantum chemistry with molecular mechanics.Crystal structure prediction indicated that there are four structures in cocrystal,namely P21/c,P212121,Pbca and Pna21,and CL-20/2,4-DNI cocrystal is likely to be P21/c and the corresponding cell parameters are Z=4,a=8.28 Å,b=12.17 Å,c=20.42 Å,α=90°,β=96.94°,γ=90°,and ρ=1.9353 g/cm^(3).To further study the intermolecular interaction of CL-20/2,4-DNI cocrystal,a series of theoretical analyses were employed including intermolecular interaction energy,electrostatic potential(ESP),Density of State(DOS),Hirshfeld surface analysis.The C-H…O hydrogen bonds are demonstrated as the predominant driving forces in the cocrystal formation.The mechanical properties and detonation properties of CL-20/2,4-DNI cocrystal implies that the cocrystal shows better ductility and excellent detonation performances(9257 m/s,39.27 GPa)and can serve as a promising energetic material.Cocrystal structure predicted was compared with the experimental one to verify the accuracy of systematic search approach.There is a less than 8.8%error between experiment and predict results,indicating the systematic search approach has extremely high reliability and accuracy.The systematic search approach can be a new strategy to search supramolecular synthons and identify structures effectively and does have the potential to promote the development of energetic cocrystal by theoretical design.
文摘This paper proposes a new approach for detecting human survivors in destructed environments using an autonomous robot. The proposed system uses a passive infrared sensor to detect the existence of living humans and a low-cost camera to acquire snapshots of the scene. The images are fed into a feed-forward neural network, trained to detect the existence of a human body or part of it within an obstructed environment. This approach requires a relatively small number of images to be acquired and processed during the rescue operation, which considerably reduces the cost of image processing, data transmission, and power consumption. The results of the conducted experiments demonstrated that this system has the potential to achieve high performance in detecting living humans in obstructed environments relatively quickly and cost-effectively. The detection accuracy ranged between 79% and 91% depending on a number of factors such as the body position, the light intensity, and the relative color matching between the body and the surrounding environment.
文摘Rice callus suspension culture(RCSC)has been shown to have anticancer activity based on cytotoxic activity on human colon and lung cancer cell lines.In the present study,the effect of RCSC on the expression of proteins in lung(A549)and colon(HT29)cancer cell lines was examined by using proteomics analysis.The protein-protein interaction study of differentially expressed proteins was done by using the Search Tool for the Retrieval of Interacting Genes(STRING),and the results showed that the proteins interacting with each other belong to different pathways.