BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To ...BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.展开更多
Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocataly...Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis.展开更多
Artificial intelligence(AI)is moving toward a new stage in its generalized development.To explain the upgrading path of sustainable design driven by AI can provide a certain basis and support for its application in de...Artificial intelligence(AI)is moving toward a new stage in its generalized development.To explain the upgrading path of sustainable design driven by AI can provide a certain basis and support for its application in design.Based on research into modern intelligence technology and design practices,this article(1)focuses on AI+,by means of relational comparisons and hierarchical structure analysis;(2)studies the value-added effect and new characteristics exhibited by the content,method,process,form,effect,and other aspects of design under the concept of sustainability;and(3)explores the upgrading mode and technological application of sustainable design,whose development is obviously influenced by the new generation of intelligence technology,through the upgrading paths of sensation,thinking,simulacrum,and construction.The continuous integration of sustainable design and AI is a trend that will endow the design process and designed objects with intelligent functions and multiple characteristics from the dimensions of cognition,thought,expression,and action.New tools and subjects will profoundly affect the value creation of design in the dimensions of environment,economy,and society.展开更多
With the swift advancement of the modern economy,the digital economy has progressively merged into various sectors.By leveraging cutting-edge information technology,it has become a pivotal strategy to enhance both pro...With the swift advancement of the modern economy,the digital economy has progressively merged into various sectors.By leveraging cutting-edge information technology,it has become a pivotal strategy to enhance both production efficiency and quality,representing the inevitable route for the transformation and upgrading of modern enterprises and industries.As the digital economy continues to develop and spread,technology has not only given rise to numerous new industries but also fostered a conducive environment for the transformation and upgrading of traditional sectors.This study takes this context as its research backdrop,examining the development background of the digital economy.It outlines the impact mechanisms through which the digital economy influences industrial structure upgrading and subsequently identifies the specific effects of the digital economy on such upgrades.Furthermore,it constructs a reform paradigm for the digital economy aimed at facilitating the upgrading of industrial structures.展开更多
Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA...Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.展开更多
Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds tha...Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds that the low-altitude economy can effectively promote the development of high-end and diversified tourism in Zhejiang by innovating tourism formats,optimizing resource allocation,and enhancing tourist experiences.Besides,it analyzes the current development status of the low-altitude economy in Zhejiang and its potential for integration with tourism,revealing specific enabling pathways for tourism transformation,including low-altitude sightseeing,aviation tourism,and low-altitude sports.Finally,it proposes policy recommendations such as strengthening policy support,enhancing infrastructure development,and cultivating market entities.The findings aim to provide theoretical references and practical guidance for the high-quality development of tourism in Zhejiang Province.展开更多
Photocatalytic selective synthesis of lactic acid(LA)from biomass sugars with a single heterogeneous catalyst is promising but challenging due to the multiple reaction steps involved.Herein,a K-doped C-rich red polyme...Photocatalytic selective synthesis of lactic acid(LA)from biomass sugars with a single heterogeneous catalyst is promising but challenging due to the multiple reaction steps involved.Herein,a K-doped C-rich red polymerized carbon nitride(RPCN)photocatalyst with uniform K/C dual sites was constructed by a molten salt template method,which was highly efficient for cascade isomerization dehydration of glucose to LA with>90%selectivity under visible light and gentle conditions.Control experiments and theoretical calculations expounded that the introduced K/C dual sites could improve the light capture ability and photogenerated charge separation efficiency,while the K species provided sufficient Lewis acid sites(adsorption sites)for the isomerization of glucose to fructose.Meanwhile,the introduced C sites that substitute N atoms could promote electrons to be captured by adsorbed oxygen for selective generation of superoxide radicals,which was highly efficient for the scission of the C3-C4 bond in fructose,exclusively furnishing LA.Importantly,the RPCN photocatalyst was also suitable for the photocatalytic upgrading of various biomass saccharides into LA with high yields of 81.3%-95.3%and could be recycled for five consecutive cycles.The tailored construction of dual sites by localization of space charge lightens an avenue for multi-step conversion of biomass with pronounced selectivity.展开更多
ESG(Environmental,Social,and Governance)performance has emerged as a central metric in assessing corporate sustainability.Utilizing ESG rating data for A-share listed companies on the Shanghai Stock Exchange spanning ...ESG(Environmental,Social,and Governance)performance has emerged as a central metric in assessing corporate sustainability.Utilizing ESG rating data for A-share listed companies on the Shanghai Stock Exchange spanning from 2019 to 2022,coupled with measures of corporate transformation and upgrading,this study introduces green innovation as a mediating variable to dissect the impact of ESG ratings on corporate transformation and upgrading.The key findings of this research are as follows:(1)ESG ratings positively influence corporate transformation and upgrading,a conclusion that retains robustness after a comprehensive series of tests and discussions on endogeneity.(2)Mechanism analysis reveals that ESG ratings foster corporate transformation and upgrading by enhancing corporate green innovation.(3)In comparison with other industries,the influence of ESG ratings on corporate transformation and upgrading is notably more pronounced among heavily polluting industries among listed companies in China.Additionally,ESG ratings exhibit a more significant promotional effect on non-state-owned enterprises compared to state-owned enterprises.Larger enterprises play a more substantial role in transformation and upgrading than small and medium-sized enterprises.The promotional effect of ESG ratings is more evident in enterprises with poor information disclosure quality.Furthermore,as media attention increases,so does the impact of ESG ratings on corporate transformation.This study offers valuable policy insights from the ESG rating perspective,aiming to propel corporate transformation and upgrading,thereby contributing to economic high-quality and sustainable development.展开更多
To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review exp...To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review explores the evolving landscape of unconventional oil resources,focusing on the environmental and economic implica-tions of bitumen partial upgrading technologies,particularly within the Canadian context.With over 55%of the world’s oil reserves comprising of unconventional oil,which includes extra-heavy oil and oil sand bitumen,there is a growing trend to shift from traditional oil sources to these abundant yet under-utilized reserves.This review delves into the challenges and advancements in bitumen partial upgrading,highlighting the latest technologies in thermal cracking,hydrocracking,catalytic cracking,and innovative methods like surfactant integration,cavi-tation,microwave,and plasma-assisted upgrading.It also discusses the environmental implications and eco-nomic feasibility of these technologies,emphasizing the necessity for sustainable and cost-effective solutions at petroleum field sites.Furthermore,the report introduces the transformative concept of Bitumen Beyond Com-bustion(BBC),which explores the non-combustion uses of bitumen and its asphaltene fraction in manufacturing high-value carbon-based products.These novel approaches align with global sustainability goals,offering the potential for significant reductions in greenhouse gas emissions and new routes to diversify the economic ap-plications of bitumen.The review then concludes with an assessment of current challenges and future research directions,advocating for a balanced approach that harmonizes technological innovation,environmental stewardship,and economic viability in the field of bitumen upgrading.展开更多
Cross-border e-commerce has emerged as a new growth point in foreign trade.While the Dalian comprehensive pilot zone has made some progress,its development is constrained by issues such as the global economic slowdown...Cross-border e-commerce has emerged as a new growth point in foreign trade.While the Dalian comprehensive pilot zone has made some progress,its development is constrained by issues such as the global economic slowdown,the relatively small scale of cross-border e-commerce,a high concentration of export commodities,imperfect information mechanisms,and high overall costs.To address these challenges,this paper explores the importance of the construction of the Dalian comprehensive pilot zone for cross-border e-commerce to the transformation and upgrading of exports.Based on my research project,“Research on Path Optimization of Financial Support for the Development of Advanced Manufacturing Clusters in Dalian,”this paper analyzes the current challenges and limiting factors and proposes corresponding countermeasures and suggestions.展开更多
Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemica...Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.展开更多
Agriculture is one of the core areas of economic development in Central and Eastern European countries(CEEC).Since the launch of the cooperation between China and Central and Eastern European countries(China-CEEC Coop...Agriculture is one of the core areas of economic development in Central and Eastern European countries(CEEC).Since the launch of the cooperation between China and Central and Eastern European countries(China-CEEC Cooperation)in 2012,agricultural trade has become a pillar of bilateral pragmatic cooperation.Expanding agricultural exports to China has always been the key demand of CEEC.展开更多
Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green...Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green financial development on the upgrading and optimization of industrial structure and the real effect,collates and summarizes the theories of green finance and industrial structure at home and abroad,and carefully analyzes the development of green finance in Jiangsu Province,such as the gradual expansion of green credit scale,the characteristics of industrial structure,the change of the proportion of three industries,the development situation of emerging industries and so on.By means of econometrics,an empirical model covering Green Financial Development Indicators and industrial structure optimization indicators is established to do multiple linear regression analysis and stability test.The empirical results show that the development of green finance in Jiangsu plays an obvious positive role in the optimization and upgrading of industrial structure.Green finance is environmental protection,new energy and other green industries are given important financial support,which drives their scale expansion and technological innovation,and makes the industrial structure develop towards a higher level and a more reasonable direction.From this point of view,corresponding proposals are put forward to improve the policy incentive system,add green financial products,and strengthen the construction of green financial market.The purpose is to give better play to the advantages of green finance,accelerate the optimization and upgrading of industrial structure in Jiangsu,and provide theoretical basis and practical guidance for achieving green economic transformation and sustainable development.展开更多
With the deepening of international agricultural division of labor,trade methods have shifted from traditional bilateral trade to agricultural global value chain(AGVC)trade.Sanitary and Phytosanitary(SPS)measures are ...With the deepening of international agricultural division of labor,trade methods have shifted from traditional bilateral trade to agricultural global value chain(AGVC)trade.Sanitary and Phytosanitary(SPS)measures are a crucial factor affecting agricultural trade and a key variable in AGVC governance.This paper,based on the 2012-2020 University of International Business and Economics Global Value Chain Index(UIBE GVC Index)and the United Nations Conference on Trade and Development Non-Tariff Measures Database(UNCTAD NTMs Database),measures the structural heterogeneity and breadth heterogeneity of SPS measures.It also constructs mathematical models and fixed-effects models to explore the impact of SPS heterogeneity on AGVC upgrading.The findings reveal that the heterogeneity of SPS measures exerts a significant inhibitory effect on the upgrading of agricultural global value chains.Moreover,compared to developed countries,a reduction in SPS measures’heterogeneity demonstrates a more pronounced positive impact on AGVC upgrading in developing countries.展开更多
Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from dig...Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.展开更多
A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to...A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.展开更多
Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided ...Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.展开更多
Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carri...Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carried out in dedicated micro-reactors and pilot plants, whose designs are critical to the performance selection. Variation in catalyst composition and defining the gas to oil feed ratios with the operating temperature are a few of the parameters studied. Product selection and maximizing diesel yield combined with stability (catalyst life) were the ultimate drivers. The selected catalyst was then tested under commercial conditions in a dedicated 300 barrel per day demonstration plant. The products were also tested in engines to assess their combustion characteristics.展开更多
Recommendations for managing clinically localized prostate cancer are structured around clinical risk criteria,with prostate biopsy(PB)Gleason score(GS)being the most important factor.Biopsy to radical prostatectomy(R...Recommendations for managing clinically localized prostate cancer are structured around clinical risk criteria,with prostate biopsy(PB)Gleason score(GS)being the most important factor.Biopsy to radical prostatectomy(RP)specimen upgrading/downgrading is welldescribed,and is often the ratio nale for costly imaging or genomic studies.We prese nt simple,no-cost an a lyses of clinical parametersto predict which GS 6 and GS 8 patients will change to GS 7 at prostatectomy.From May 2006 to December 2012,1590 patientsunderwent robot-assisted radical prostatectomy(RARP).After exclusions,we identified a GS 6 cohort of 374 patients and a GS 8cohort of 91 patients.During this era,>1000 additional patients were enrolled in an active surveillanee(AS)program.For GS 6,265(70.9%)of 374 patients were upgraded,and the cohort included 183(48.9%)patients eligible for AS by the Prostate Cancer ResearchInternational Active Surveillance Study(PRIAS)standards,of which 57.9%were upgraded.PB features that predicted a>90%chanceof upgrading included≥7 cores positive,maximum foci length≥8 mm in any core,and total tumor involvement≥30%.For GS 8,downgrading occurred in 46(50.5%),which was significantly higher for single core versus multiple cores(80.4%vs 19.6%,P=0.011).Biochemical recurre nee(BCR)occurred in 3.4%of GS 6 upgraded versus 0%non upgraded,and in GS 8,19.6%downgraded versus42.2%nondown graded.In coun seling men with clin ically localized prostate can cer,the odds of GS cha nge should be presented,andcertain men with high-volume GS 6 or low-volume GS 8 can be counseled with GS 7-based recommendations.展开更多
The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screenin...The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screening,oil-soluble catalysts,copper naphthenate and manganese naphthenate,are more attractive,and were selected to further investigate their catalytic performance in in situ upgrading of heavy oil.The heavy oil compositions and molecular structures were characterized by column chromatography,elemental analysis,and Fourier transform infrared spectrometry before and after reaction.An Arrhenius kinetics model was introduced to calculate the rheological activation energy of heavy oil from the viscosity-temperature characteristics.Results show that the two oil-soluble catalysts can crack part of heavy components into light components,decrease the heteroatom content,and achieve the transition of reaction mode from oxygen addition to bond scission.The calculated rheological activation energy of heavy oil from the fitted Arrhenius model is consistent with physical properties of heavy oil(oil viscosity and contents of heavy fractions).It is found that the temperature,oil composition,and internal molecular structures are the main factors affecting its flow ability.Oil-soluble catalyst-assisted air injection or air huff-n-puff injection is a promising in situ catalytic upgrading method for improving heavy oil recovery.展开更多
基金Supported by the National Key Research and Development Program of China,No.2022YFC2503600。
文摘BACKGROUND The discrepancy between endoscopic biopsy pathology and the overall pathology of gastric low-grade intraepithelial neoplasia(LGIN)presents challenges in developing diagnostic and treatment protocols.AIM To develop a risk prediction model for the pathological upgrading of gastric LGIN to aid clinical diagnosis and treatment.METHODS We retrospectively analyzed data from patients newly diagnosed with gastric LGIN who underwent complete endoscopic resection within 6 months at the First Medical Center of Chinese People’s Liberation Army General Hospital between January 2008 and December 2023.A risk prediction model for the pathological progression of gastric LGIN was constructed and evaluated for accuracy and clinical applicability.RESULTS A total of 171 patients were included in this study:93 patients with high-grade intraepithelial neoplasia or early gastric cancer and 78 with LGIN.The logistic stepwise regression model demonstrated a sensitivity and specificity of 0.868 and 0.800,respectively,while the least absolute shrinkage and selection operator(LASSO)regression model showed sensitivity and specificity values of 0.842 and 0.840,respectively.The area under the curve(AUC)for the logistic model was 0.896,slightly lower than the AUC of 0.904 for the LASSO model.Internal validation with 30%of the data yielded AUC scores of 0.908 for the logistic model and 0.905 for the LASSO model.The LASSO model provided greater utility in clinical decision-making.CONCLUSION A risk prediction model for the pathological upgrading of gastric LGIN based on white-light and magnifying endoscopic features can accurately and effectively guide clinical diagnosis and treatment.
基金financially supported by the National Natural Science Foundation of China(No.22205205)the Natural Science Foundation of Zhejiang Province(No.LQ24E040002)the Science Foundation of Zhejiang Sci-Tech University(ZSTU)(Nos.21062337Y,LW-YP2024076)。
文摘Integrating electrochemical upgrading of glycerol and water electrolysis is regarded as a promising and energy-saving approach for the co-production of chemicals and hydrogen.However,developing efficient electrocatalyst towards this technology remains challenging.Herein,a metallic cobalt mediated molybdenum nitride heterostructural material has been exploited on nickel foam(Co@Mo_(2)N/NF)for the glycerol oxidation reaction(GOR)and hydrogen evolution reaction(HER).Remarkably,the obtained Co@Mo_(2)N/NF realizes eminent performance with low overpotential of 49 mV at 50 mA/cm^(2)for HER and high Faradaic efficiency of formate of 95.03%at 1.35 V vs.RHE for GOR,respectively.The systematic in-situ experiments reveal that the Co@Mo_(2)N heterostructure promotes the cleavage of C-C bond in glycerol by active CoOOH species and boosts the conversion of glycerol to aldehyde intermediates to formate product.Moreover,the density functional theory(DFT)calculations confirm the strong interaction at Co@Mo_(2)N interface,which contributes to the optimized water dissociation and the transformation of H^(*)to H^(2).Benefiting from those advantages,the built HER||GOR electrolyzer delivers a low voltage of 1.61 V at 50 mA/cm^(2),high Faradaic efficiency,and robust stability over 120 h for sustained and stable electrolysis.
文摘Artificial intelligence(AI)is moving toward a new stage in its generalized development.To explain the upgrading path of sustainable design driven by AI can provide a certain basis and support for its application in design.Based on research into modern intelligence technology and design practices,this article(1)focuses on AI+,by means of relational comparisons and hierarchical structure analysis;(2)studies the value-added effect and new characteristics exhibited by the content,method,process,form,effect,and other aspects of design under the concept of sustainability;and(3)explores the upgrading mode and technological application of sustainable design,whose development is obviously influenced by the new generation of intelligence technology,through the upgrading paths of sensation,thinking,simulacrum,and construction.The continuous integration of sustainable design and AI is a trend that will endow the design process and designed objects with intelligent functions and multiple characteristics from the dimensions of cognition,thought,expression,and action.New tools and subjects will profoundly affect the value creation of design in the dimensions of environment,economy,and society.
文摘With the swift advancement of the modern economy,the digital economy has progressively merged into various sectors.By leveraging cutting-edge information technology,it has become a pivotal strategy to enhance both production efficiency and quality,representing the inevitable route for the transformation and upgrading of modern enterprises and industries.As the digital economy continues to develop and spread,technology has not only given rise to numerous new industries but also fostered a conducive environment for the transformation and upgrading of traditional sectors.This study takes this context as its research backdrop,examining the development background of the digital economy.It outlines the impact mechanisms through which the digital economy influences industrial structure upgrading and subsequently identifies the specific effects of the digital economy on such upgrades.Furthermore,it constructs a reform paradigm for the digital economy aimed at facilitating the upgrading of industrial structures.
基金financial support of the National Natural Science Foundation of China(NSFC)(22372039 and 22305247)the Natural Science Foundation of Fujian Province of China(2021J06010)the Fuzhou University Testing Fund of Precious Apparatus(2025T022)。
文摘Transition metal-based electrocatalysts are a promising alternative to noble metal catalysts for electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural(HMF)into high-value 2,5-furandicarboxylic acid(FDCA).However,the rational design of efficient electrocatalysts with precisely tailored structure-activity correlations remains a critical challenge.Herein,we report a hierarchically structured self-supporting electrode(Vo-NiCo(OH)_(2)-NF)synthesized through in situ electrochemical reconstruction of NiCo-Prussian blue analogue(NiCo-PBA)precursor,in which oxygen vacancy(Vo)-rich Co-doped Ni(OH)_(2)nanosheet arrays are vertically aligned on nickel foam(NF),creating an interconnected conductive network.When evaluated for the HMF oxidation reaction(HMFOR),Vo-NiCo(OH)_(2)-NF exhibits exceptional electrochemical performance,achieving near-complete HMF conversion(99%),ultrahigh FDCA Faradaic efficiency(97.5%),and remarkable product yield(96.2%)at 1.45 V,outperforming conventional Co-doped Ni(OH)_(2)(NiCo(OH)_(2)-NF)and pristine Ni(OH)_(2)(Ni(OH)_(2)-NF)electrodes.By combining in situ spectroscopic characterization and theoretical calculations,we elucidate that the synergistic effects of Co-doping and oxygen vacancy engineering effectively modulate the electronic structure of Ni active centers,favor the formation of high-valent Ni^(3+)species,and optimize HMF adsorption,thereby improving the HMFOR performance.This work provides valuable mechanistic insights for catalyst design and may inspire the development of advanced transition metal-based electrodes for efficient biomass conversion systems.
文摘Taking Zhejiang Province as an example,this paper explores the mechanisms and implementation pathways through which the low-altitude economy drives the transformation and upgrading of the tourism industry.It finds that the low-altitude economy can effectively promote the development of high-end and diversified tourism in Zhejiang by innovating tourism formats,optimizing resource allocation,and enhancing tourist experiences.Besides,it analyzes the current development status of the low-altitude economy in Zhejiang and its potential for integration with tourism,revealing specific enabling pathways for tourism transformation,including low-altitude sightseeing,aviation tourism,and low-altitude sports.Finally,it proposes policy recommendations such as strengthening policy support,enhancing infrastructure development,and cultivating market entities.The findings aim to provide theoretical references and practical guidance for the high-quality development of tourism in Zhejiang Province.
基金supported by the National Natural Science Foundation of China(Nos.22368014 and 22478087)Guizhou Provincial S&T Project(Nos.GCC[2023]011 and ZK[2022]011).
文摘Photocatalytic selective synthesis of lactic acid(LA)from biomass sugars with a single heterogeneous catalyst is promising but challenging due to the multiple reaction steps involved.Herein,a K-doped C-rich red polymerized carbon nitride(RPCN)photocatalyst with uniform K/C dual sites was constructed by a molten salt template method,which was highly efficient for cascade isomerization dehydration of glucose to LA with>90%selectivity under visible light and gentle conditions.Control experiments and theoretical calculations expounded that the introduced K/C dual sites could improve the light capture ability and photogenerated charge separation efficiency,while the K species provided sufficient Lewis acid sites(adsorption sites)for the isomerization of glucose to fructose.Meanwhile,the introduced C sites that substitute N atoms could promote electrons to be captured by adsorbed oxygen for selective generation of superoxide radicals,which was highly efficient for the scission of the C3-C4 bond in fructose,exclusively furnishing LA.Importantly,the RPCN photocatalyst was also suitable for the photocatalytic upgrading of various biomass saccharides into LA with high yields of 81.3%-95.3%and could be recycled for five consecutive cycles.The tailored construction of dual sites by localization of space charge lightens an avenue for multi-step conversion of biomass with pronounced selectivity.
文摘ESG(Environmental,Social,and Governance)performance has emerged as a central metric in assessing corporate sustainability.Utilizing ESG rating data for A-share listed companies on the Shanghai Stock Exchange spanning from 2019 to 2022,coupled with measures of corporate transformation and upgrading,this study introduces green innovation as a mediating variable to dissect the impact of ESG ratings on corporate transformation and upgrading.The key findings of this research are as follows:(1)ESG ratings positively influence corporate transformation and upgrading,a conclusion that retains robustness after a comprehensive series of tests and discussions on endogeneity.(2)Mechanism analysis reveals that ESG ratings foster corporate transformation and upgrading by enhancing corporate green innovation.(3)In comparison with other industries,the influence of ESG ratings on corporate transformation and upgrading is notably more pronounced among heavily polluting industries among listed companies in China.Additionally,ESG ratings exhibit a more significant promotional effect on non-state-owned enterprises compared to state-owned enterprises.Larger enterprises play a more substantial role in transformation and upgrading than small and medium-sized enterprises.The promotional effect of ESG ratings is more evident in enterprises with poor information disclosure quality.Furthermore,as media attention increases,so does the impact of ESG ratings on corporate transformation.This study offers valuable policy insights from the ESG rating perspective,aiming to propel corporate transformation and upgrading,thereby contributing to economic high-quality and sustainable development.
文摘To satisfy the increasing global energy demand,while searching for new energy sources,it’s important to take a closer look at the resources already at our disposal and optimize their use.This comprehensive review explores the evolving landscape of unconventional oil resources,focusing on the environmental and economic implica-tions of bitumen partial upgrading technologies,particularly within the Canadian context.With over 55%of the world’s oil reserves comprising of unconventional oil,which includes extra-heavy oil and oil sand bitumen,there is a growing trend to shift from traditional oil sources to these abundant yet under-utilized reserves.This review delves into the challenges and advancements in bitumen partial upgrading,highlighting the latest technologies in thermal cracking,hydrocracking,catalytic cracking,and innovative methods like surfactant integration,cavi-tation,microwave,and plasma-assisted upgrading.It also discusses the environmental implications and eco-nomic feasibility of these technologies,emphasizing the necessity for sustainable and cost-effective solutions at petroleum field sites.Furthermore,the report introduces the transformative concept of Bitumen Beyond Com-bustion(BBC),which explores the non-combustion uses of bitumen and its asphaltene fraction in manufacturing high-value carbon-based products.These novel approaches align with global sustainability goals,offering the potential for significant reductions in greenhouse gas emissions and new routes to diversify the economic ap-plications of bitumen.The review then concludes with an assessment of current challenges and future research directions,advocating for a balanced approach that harmonizes technological innovation,environmental stewardship,and economic viability in the field of bitumen upgrading.
文摘Cross-border e-commerce has emerged as a new growth point in foreign trade.While the Dalian comprehensive pilot zone has made some progress,its development is constrained by issues such as the global economic slowdown,the relatively small scale of cross-border e-commerce,a high concentration of export commodities,imperfect information mechanisms,and high overall costs.To address these challenges,this paper explores the importance of the construction of the Dalian comprehensive pilot zone for cross-border e-commerce to the transformation and upgrading of exports.Based on my research project,“Research on Path Optimization of Financial Support for the Development of Advanced Manufacturing Clusters in Dalian,”this paper analyzes the current challenges and limiting factors and proposes corresponding countermeasures and suggestions.
基金financially supported by the National Natural Science Foundation of China(22205205)the Fundamental Research Funds of Zhejiang Sci-Tech University(ZSTU,25262157Y)the staff of beamline BL11B and BL13SSW at Shanghai Synchrotron Radiation Facility for experimental support。
文摘Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.
文摘Agriculture is one of the core areas of economic development in Central and Eastern European countries(CEEC).Since the launch of the cooperation between China and Central and Eastern European countries(China-CEEC Cooperation)in 2012,agricultural trade has become a pillar of bilateral pragmatic cooperation.Expanding agricultural exports to China has always been the key demand of CEEC.
基金The Impact of Digital Economy on Green Development Efficiency.2025 Nanjing University of Science and Technology Zijin College Campus Level Scientific Research Project(Project No.:2025ZXSK0401011)。
文摘Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green financial development on the upgrading and optimization of industrial structure and the real effect,collates and summarizes the theories of green finance and industrial structure at home and abroad,and carefully analyzes the development of green finance in Jiangsu Province,such as the gradual expansion of green credit scale,the characteristics of industrial structure,the change of the proportion of three industries,the development situation of emerging industries and so on.By means of econometrics,an empirical model covering Green Financial Development Indicators and industrial structure optimization indicators is established to do multiple linear regression analysis and stability test.The empirical results show that the development of green finance in Jiangsu plays an obvious positive role in the optimization and upgrading of industrial structure.Green finance is environmental protection,new energy and other green industries are given important financial support,which drives their scale expansion and technological innovation,and makes the industrial structure develop towards a higher level and a more reasonable direction.From this point of view,corresponding proposals are put forward to improve the policy incentive system,add green financial products,and strengthen the construction of green financial market.The purpose is to give better play to the advantages of green finance,accelerate the optimization and upgrading of industrial structure in Jiangsu,and provide theoretical basis and practical guidance for achieving green economic transformation and sustainable development.
文摘With the deepening of international agricultural division of labor,trade methods have shifted from traditional bilateral trade to agricultural global value chain(AGVC)trade.Sanitary and Phytosanitary(SPS)measures are a crucial factor affecting agricultural trade and a key variable in AGVC governance.This paper,based on the 2012-2020 University of International Business and Economics Global Value Chain Index(UIBE GVC Index)and the United Nations Conference on Trade and Development Non-Tariff Measures Database(UNCTAD NTMs Database),measures the structural heterogeneity and breadth heterogeneity of SPS measures.It also constructs mathematical models and fixed-effects models to explore the impact of SPS heterogeneity on AGVC upgrading.The findings reveal that the heterogeneity of SPS measures exerts a significant inhibitory effect on the upgrading of agricultural global value chains.Moreover,compared to developed countries,a reduction in SPS measures’heterogeneity demonstrates a more pronounced positive impact on AGVC upgrading in developing countries.
基金This research is supported by the National Natural Science Foundation of China(91646102,L1824039,L1724034,L1624045,and L1524015)the project of China’s Ministry of Education(16JDGC011)+6 种基金the Chinese Academy of Engineering’s consultancy project(2019-ZD-9)the National Science and Technology Major Project(2016ZX04005002)Beijing Natural Science Foundation Project(9182013)the technology projects of the Chinese Academy of Engineering’s China Knowledge Center for Engineering Sciences(CKCEST-2019-2-13,CKCEST-2018-1-13,CKCEST-2017-1-10,and CKCEST-2015-4-2)the UK–China Industry Academia Partnership Programme(UK-CIAPP\260)the Volvo-supported Green Economy and Sustainable Development Projects in the Tsinghua University(20153000181)Tsinghua Initiative Research(2016THZW).
文摘Intelligent technologies are leading to the next wave of industrial revolution in manufacturing.In developed economies,firms are embracing these advanced technologies following a sequential upgrading strategy-from digital manufacturing to smart manufacturing(digital-networked),and then to newgeneration intelligent manufacturing paradigms.However,Chinese firms face a different scenario.On the one hand,they have diverse technological bases that vary from low-end electrified machinery to leading-edge digital-network technologies;thus,they may not follow an identical upgrading pathway.On the other hand,Chinese firms aim to rapidly catch up and transition from technology followers to probable frontrunners;thus,the turbulences in the transitioning phase may trigger a precious opportunity for leapfrogging,if Chinese manufacturers can swiftly acquire domain expertise through the adoption of intelligent manufacturing technologies.This study addresses the following question by conducting multiple case studies:Can Chinese firms upgrade intelligent manufacturing through different pathways than the sequential one followed in developed economies?The data sources include semistructured interviews and archival data.This study finds that Chinese manufacturing firms have a variety of pathways to transition across the three technological paradigms of intelligent manufacturing in nonconsecutive ways.This finding implies that Chinese firms may strategize their own upgrading pathways toward intelligent manufacturing according to their capabilities and industrial specifics;furthermore,this finding can be extended to other catching-up economies.This paper provides a strategic roadmap as an explanatory guide to manufacturing firms,policymakers,and investors.
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(2012AA051801)the Fundamenta lResearch Funds for the Central Universities(No.CXZZ13 0112)
文摘A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.
基金support from the National Hi-tech Research and Development Program of China (863 Program) (2012AA051801)the Fundamental Research Funds for the Central Universities (No.CXZZ13_0112)the Scientific Research Foundation of Graduate School of Southeast University (YBPY1408)
文摘Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.
文摘Conversion of Fischer-Tropsch wax into high quality synthetic crude or finished transportation fuels such as premium diesel has been studied over the past 15 years within BP. Catalyst screening and selection was carried out in dedicated micro-reactors and pilot plants, whose designs are critical to the performance selection. Variation in catalyst composition and defining the gas to oil feed ratios with the operating temperature are a few of the parameters studied. Product selection and maximizing diesel yield combined with stability (catalyst life) were the ultimate drivers. The selected catalyst was then tested under commercial conditions in a dedicated 300 barrel per day demonstration plant. The products were also tested in engines to assess their combustion characteristics.
文摘Recommendations for managing clinically localized prostate cancer are structured around clinical risk criteria,with prostate biopsy(PB)Gleason score(GS)being the most important factor.Biopsy to radical prostatectomy(RP)specimen upgrading/downgrading is welldescribed,and is often the ratio nale for costly imaging or genomic studies.We prese nt simple,no-cost an a lyses of clinical parametersto predict which GS 6 and GS 8 patients will change to GS 7 at prostatectomy.From May 2006 to December 2012,1590 patientsunderwent robot-assisted radical prostatectomy(RARP).After exclusions,we identified a GS 6 cohort of 374 patients and a GS 8cohort of 91 patients.During this era,>1000 additional patients were enrolled in an active surveillanee(AS)program.For GS 6,265(70.9%)of 374 patients were upgraded,and the cohort included 183(48.9%)patients eligible for AS by the Prostate Cancer ResearchInternational Active Surveillance Study(PRIAS)standards,of which 57.9%were upgraded.PB features that predicted a>90%chanceof upgrading included≥7 cores positive,maximum foci length≥8 mm in any core,and total tumor involvement≥30%.For GS 8,downgrading occurred in 46(50.5%),which was significantly higher for single core versus multiple cores(80.4%vs 19.6%,P=0.011).Biochemical recurre nee(BCR)occurred in 3.4%of GS 6 upgraded versus 0%non upgraded,and in GS 8,19.6%downgraded versus42.2%nondown graded.In coun seling men with clin ically localized prostate can cer,the odds of GS cha nge should be presented,andcertain men with high-volume GS 6 or low-volume GS 8 can be counseled with GS 7-based recommendations.
基金supported by the National Natural Science Foundation of China (No. 51404202)Sichuan Youth Science and Technology Fund (No. 2015JQ0038)the Scientific Research Starting Project of Southwest Petroleum University (No. 2014QHZ001)
文摘The low-temperature catalytic oxidation of heavy crude oil(Xinjiang Oilfield,China) was studied using three types of catalysts including oil-soluble,watersoluble,and dispersed catalysts.According to primary screening,oil-soluble catalysts,copper naphthenate and manganese naphthenate,are more attractive,and were selected to further investigate their catalytic performance in in situ upgrading of heavy oil.The heavy oil compositions and molecular structures were characterized by column chromatography,elemental analysis,and Fourier transform infrared spectrometry before and after reaction.An Arrhenius kinetics model was introduced to calculate the rheological activation energy of heavy oil from the viscosity-temperature characteristics.Results show that the two oil-soluble catalysts can crack part of heavy components into light components,decrease the heteroatom content,and achieve the transition of reaction mode from oxygen addition to bond scission.The calculated rheological activation energy of heavy oil from the fitted Arrhenius model is consistent with physical properties of heavy oil(oil viscosity and contents of heavy fractions).It is found that the temperature,oil composition,and internal molecular structures are the main factors affecting its flow ability.Oil-soluble catalyst-assisted air injection or air huff-n-puff injection is a promising in situ catalytic upgrading method for improving heavy oil recovery.