The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating con- ditions. However, the causes and the mechanism of inter- bl...The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating con- ditions. However, the causes and the mechanism of inter- blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter- blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and theblade angle on the leading edge of the runner at deep part load operating conditions.展开更多
In order to compensate for the stochastic nature of the power grid due to the tremendous development and the integration of renewable energy resources and meet its other requirements,the hydraulic turbines are forced ...In order to compensate for the stochastic nature of the power grid due to the tremendous development and the integration of renewable energy resources and meet its other requirements,the hydraulic turbines are forced to operate more frequently under partial load conditions with singular and misaligned flows inevitably excited by the inter-blade vortex.This paper presents numerical investigations of the unsteady characteristics of the inter-blade vortex for a low-head model Francis turbine.The SST k-ωturbulent model is used to close the unsteady Reynolds-averaged Navier-Stokes(RANS)equation.The flow structure of the inter blade vortex predicted by the numerical simulation is confirmed by experimental visualizations.It is shown that the total vortex volume in the runner sees a quasi-periodical oscillation,with significant flow separations created on the suction side of the runner blade.A counter measure by using the air admission into the water from the head cover is implemented to alleviate the undesirable effect of the inter-blade vortex.The analyses show that the development of the inter-blade vortex is significantly mitigated by the injecting air that controls and changes the spatial distribution of streamlines.Furthermore,the flow aeration with a suitable air flow rate can reduce the energy dissipation caused by the inter-blade vortex and plays a critical role in preventing the excessive amplitudes of the pressure fluctuation on the suction side of the runner blade.This investigation provides an insight into the flow mechanism underlying the inter-blade vortex and offers a reference to alleviate and mitigate the adverse consequences of the inter-blade vortex for the Francis turbine.展开更多
Flutter is a self-sustained vibration which could create serious damage to compressor blades.Improving the efficiency and accuracy of Fluid-Structure Interaction(FSI)method is crucial to flutter analysis.An efficient ...Flutter is a self-sustained vibration which could create serious damage to compressor blades.Improving the efficiency and accuracy of Fluid-Structure Interaction(FSI)method is crucial to flutter analysis.An efficient FSI method which combines a fast mesh deformation technology and Double-Passage Shape Correction(DPSC)method is proposed to predict blades flutter under traveling wave modes.Firstly,regarding the fluid domain as a pseudo elastic solid,the flow mesh deformation and blade vibration response can be quickly obtained by solving the governing equations of the holistic system composed of blade and pseudo elastic solid.Then,by storing and updating the Fourier coefficients on the circumferential boundary,the phase-lagged boundary condition is introduced into the computational domain.Finally,the aerodynamic stability for the blades of an axial compressor under various Inter-Blade Phase Angle(IBPA)is analyzed.The results show that the proposed method can effectively predict the characteristics of aerodynamic damping,aerodynamic force and blade displacement.And a conceptual model is proposed to describe the motion behavior of the shock wave.Compared with the multi-passage method,the proposed method obtains almost the same unstable IBPA interval and the blade displacement error is less than 3.4%.But the calculation time is significantly shortened especially in small IBPA cases.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51279172)Open Research Subject of Key Laboratory of Fluid Machinery of Ministry of Education,Xihua University,China(Grant No.szjj2015-022)Key Laboratory of Natural Science Fund of Education Department of Sichuan Province,China(Grant No.080704)
文摘The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating con- ditions. However, the causes and the mechanism of inter- blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter- blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and theblade angle on the leading edge of the runner at deep part load operating conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.51839010).
文摘In order to compensate for the stochastic nature of the power grid due to the tremendous development and the integration of renewable energy resources and meet its other requirements,the hydraulic turbines are forced to operate more frequently under partial load conditions with singular and misaligned flows inevitably excited by the inter-blade vortex.This paper presents numerical investigations of the unsteady characteristics of the inter-blade vortex for a low-head model Francis turbine.The SST k-ωturbulent model is used to close the unsteady Reynolds-averaged Navier-Stokes(RANS)equation.The flow structure of the inter blade vortex predicted by the numerical simulation is confirmed by experimental visualizations.It is shown that the total vortex volume in the runner sees a quasi-periodical oscillation,with significant flow separations created on the suction side of the runner blade.A counter measure by using the air admission into the water from the head cover is implemented to alleviate the undesirable effect of the inter-blade vortex.The analyses show that the development of the inter-blade vortex is significantly mitigated by the injecting air that controls and changes the spatial distribution of streamlines.Furthermore,the flow aeration with a suitable air flow rate can reduce the energy dissipation caused by the inter-blade vortex and plays a critical role in preventing the excessive amplitudes of the pressure fluctuation on the suction side of the runner blade.This investigation provides an insight into the flow mechanism underlying the inter-blade vortex and offers a reference to alleviate and mitigate the adverse consequences of the inter-blade vortex for the Francis turbine.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.51675406)the Basic Research Project Group,China(No.514010106-205).
文摘Flutter is a self-sustained vibration which could create serious damage to compressor blades.Improving the efficiency and accuracy of Fluid-Structure Interaction(FSI)method is crucial to flutter analysis.An efficient FSI method which combines a fast mesh deformation technology and Double-Passage Shape Correction(DPSC)method is proposed to predict blades flutter under traveling wave modes.Firstly,regarding the fluid domain as a pseudo elastic solid,the flow mesh deformation and blade vibration response can be quickly obtained by solving the governing equations of the holistic system composed of blade and pseudo elastic solid.Then,by storing and updating the Fourier coefficients on the circumferential boundary,the phase-lagged boundary condition is introduced into the computational domain.Finally,the aerodynamic stability for the blades of an axial compressor under various Inter-Blade Phase Angle(IBPA)is analyzed.The results show that the proposed method can effectively predict the characteristics of aerodynamic damping,aerodynamic force and blade displacement.And a conceptual model is proposed to describe the motion behavior of the shock wave.Compared with the multi-passage method,the proposed method obtains almost the same unstable IBPA interval and the blade displacement error is less than 3.4%.But the calculation time is significantly shortened especially in small IBPA cases.