期刊文献+
共找到14,290篇文章
< 1 2 250 >
每页显示 20 50 100
A splicing algorithm for best subset selection in sliced inverse regression
1
作者 Borui Tang Jin Zhu +1 位作者 Tingyin Wang Junxian Zhu 《中国科学技术大学学报》 北大核心 2025年第5期22-34,21,I0001,共15页
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re... In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors. 展开更多
关键词 splicing technique best subset selection sliced inverse regression nonconvex optimization sparsity constraint optimal conditions
在线阅读 下载PDF
Slice-GCN:基于程序切片与图神经网络的智能合约漏洞检测方法
2
作者 张人娄 吴胜 +1 位作者 张浩 刘方宇 《信息安全学报》 2025年第1期105-118,共14页
智能合约是一段由计算机代码构成的程序。随着智能合约数量的暴涨,如何利用漏洞检测方法来提升智能合约的安全性显得更加重要。已有的符号执行、模糊测试与形式化验证等漏洞检测方法自动化程度低,而基于序列模型的深度学习方法由于对智... 智能合约是一段由计算机代码构成的程序。随着智能合约数量的暴涨,如何利用漏洞检测方法来提升智能合约的安全性显得更加重要。已有的符号执行、模糊测试与形式化验证等漏洞检测方法自动化程度低,而基于序列模型的深度学习方法由于对智能合约源代码的特征挖掘不足导致检测结果的精度偏低。因此,本文提出一个基于程序切片与图神经网络的以太坊智能合约(简称智能合约)漏洞检测方法Slice-GCN。该方法先对程序进行代码预处理简化程序,再使用基于图可达性和数据流方程的程序切片方法对预处理后的程序进行切片,并将切片结果输入长短期记忆网络(LSTM)中提取智能合约的程序语义特征。接着,简化程序依赖图后将其输入图卷积神经网络中,并提取智能合约的程序结构特征。然后,将智能合约的程序语义特征和结构特征拼接后输入多层感知机(MLP)中,并对智能合约进行漏洞检测。在提出Slice-GCN方法的基础上,针对重入攻击、时间戳依赖及整数溢出三类漏洞,本文对Slice-GCN方法与Oyente、Osiris和Soliditycheck三款智能漏洞检测工具进行了对比实验,并且通过消融实验分析了程序切片、图神经网络及图收缩比例对实验结果的影响。实验结果表明本文提出的方法在各类指标上均有较大提升,能有效提升检测准确度和精度,降低误报率,同时在检测速度上也明显优于传统的智能合约漏洞检测工具。 展开更多
关键词 智能合约 漏洞检测 图神经网络 程序切片
在线阅读 下载PDF
An automated raw tissue precision slicing system for methodological advances in biomedical applications:streamlining decellularization in porcine cornea-derived tissue-specific bioink fabrication and beyond
3
作者 Won Bin Choi Yeon-ju Lee +2 位作者 Ju Young Park Jinah Jang Wan Kyun Chung 《Bio-Design and Manufacturing》 2025年第3期375-390,I0013-I0016,共20页
A decellularized extracellular matrix(dECM)constitutes a pivotal biomaterial created by decellularizing the natural extracellular matrix(ECM).This material serves as a supportive medium for intricate cellular interact... A decellularized extracellular matrix(dECM)constitutes a pivotal biomaterial created by decellularizing the natural extracellular matrix(ECM).This material serves as a supportive medium for intricate cellular interactions,fostering cell growth,differentiation,and organization.However,challenges persist in decellularization,necessitating a balance between preserving the ECM structural integrity and achieving effective cellular removal.An approach to enhancing decellularization involves pre-eliminating unnecessary tissues and effectively reducing final DNA levels to lower than 50 ng/mg ECM on preprocessed tissues.Although this strategic step augments decellularization efficiency,the current manual execution method depends on the operator’s skill.To address this limitation,this study proposed an automated raw tissue slicing system that does not require tissue preparation for slicing.Through carefully controlled tissue applanation pressure and oscillatory incisions with optimized parameters,the system achieved a precision within±10µm in obtaining submillimeter-scale tissue slices of the porcine cornea while avoiding significant microscopic complications in the tissue structure,as observed by tissue histology.These findings suggested the system’s capability to streamline and automate preliminary tissue slicing operations.The efficacy of this approach for decellularization was validated by processing porcine corneas using the proposed system and subsequently decellularizing the processed tissues.DNA level analysis revealed that sliced,subdivided tissues created by this system could expedite DNA reduction even at the initial steps of decellularization,enhancing the overall decellularization procedure. 展开更多
关键词 Raw tissue slicing Submillimeter-scale slices High-precision Oscillatory incision Applanation DECELLULARIZATION
暂未订购
Soft Resource Slicing for Industrial Mixed Traffic in 5G Networks
4
作者 Jingfang Ding Meng Zheng Haibin Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期463-465,共3页
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler... Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme. 展开更多
关键词 G networks industrial mixed traffic dynamic switching soft slicing strategy periodic delay sensitive traffic soft slicing dynamic switching g networks dynamic switching strategy
在线阅读 下载PDF
Slice-Based 6G Network with Enhanced Manta Ray Deep Reinforcement Learning-Driven Proactive and Robust Resource Management
5
作者 Venkata Satya Suresh kumar Kondeti Raghavendra Kulkarni +1 位作者 Binu Sudhakaran Pillai Surendran Rajendran 《Computers, Materials & Continua》 2025年第9期4973-4995,共23页
Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resou... Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures.Nonetheless,sustaining elevated Quality of Service(QoS)in dynamic,resource-limited systems poses significant hurdles.This study introduces an innovative packet-based proactive end-to-end(ETE)resource management system that facilitates network slicing with improved resilience and proactivity.To get around the drawbacks of conventional reactive systems,we develop a cost-efficient slice provisioning architecture that takes into account limits on radio,processing,and transmission resources.The optimization issue is non-convex,NP-hard,and requires online resolution in a dynamic setting.We offer a hybrid solution that integrates an advanced Deep Reinforcement Learning(DRL)methodology with an Improved Manta-Ray Foraging Optimization(ImpMRFO)algorithm.The ImpMRFO utilizes Chebyshev chaotic mapping for the formation of a varied starting population and incorporates Lévy flight-based stochastic movement to avert premature convergence,hence facilitating improved exploration-exploitation trade-offs.The DRL model perpetually acquires optimum provisioning strategies via agent-environment interactions,whereas the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.The DRL model perpetually acquires optimum provisioning methods via agent-environment interactions,while the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.Experimental findings reveal that the proactive ETE system outperforms DRL models and non-resilient provisioning techniques.Our technique increases PSSRr,decreases average latency,and optimizes resource use.These results demonstrate that the hybrid architecture for robust,real-time,and scalable slice management in future 6G networks is feasible. 展开更多
关键词 Sliced network manta ray foraging optimization Chebyshev chaotic map levy flight
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
6
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Unknown DDoS Attack Detection with Sliced Iterative Normalizing Flows Technique
7
作者 Chin-Shiuh Shieh Thanh-Lam Nguyen +1 位作者 Thanh-Tuan Nguyen Mong-Fong Horng 《Computers, Materials & Continua》 2025年第3期4881-4912,共32页
DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become m... DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment. 展开更多
关键词 Distributed denial of service sliced iterative normalizing flows open-set recognition CYBERSECURITY deep learning
在线阅读 下载PDF
基于SLICE模型的东台“三医”协同发展和治理实践分析 被引量:4
8
作者 宋大平 刘志 甘戈 《中国医院管理》 北大核心 2024年第10期20-22,共3页
医疗、医保、医药协同发展和治理是实现卫生健康事业高质量发展和深化医药卫生体制改革的关键。剖析总结了江苏省东台市医疗、医保、医药协同发展和治理改革在战略设计(导航仪)、组织领导(引擎机)、资源统合(燃料箱)、协同工具(润滑剂)... 医疗、医保、医药协同发展和治理是实现卫生健康事业高质量发展和深化医药卫生体制改革的关键。剖析总结了江苏省东台市医疗、医保、医药协同发展和治理改革在战略设计(导航仪)、组织领导(引擎机)、资源统合(燃料箱)、协同工具(润滑剂)和评估反馈(晴雨表)全闭环方面的经验举措,提炼为“三医”协同发展和治理的SLICE模型,并提出在坚持以改革创新激发“三医”协同发展和治理活力的基础上,充分发挥各级党委、政府的主导作用,建立“三医”协同发展和治理跨部门议事协调机制,吸纳多元主体参与协同治理并强化协同治理措施的系统性,以确保“三医”协同发展和治理改革行稳致远。 展开更多
关键词 “三医”协同发展和治理 SLICE模型 医药卫生体制改革
暂未订购
An Intelligent Admission Control Scheme for Dynamic Slice Handover Policy in 5G Network Slicing
9
作者 Ratih Hikmah Puspita Jehad Ali Byeong-hee Roh 《Computers, Materials & Continua》 SCIE EI 2023年第5期4611-4631,共21页
5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent lat... 5G use cases,for example enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and an ultra-reliable low latency communication(URLLC),need a network architecture capable of sustaining stringent latency and bandwidth requirements;thus,it should be extremely flexible and dynamic.Slicing enables service providers to develop various network slice architectures.As users travel from one coverage region to another area,the callmust be routed to a slice thatmeets the same or different expectations.This research aims to develop and evaluate an algorithm to make handover decisions appearing in 5G sliced networks.Rules of thumb which indicates the accuracy regarding the training data classification schemes within machine learning should be considered for validation and selection of the appropriate machine learning strategies.Therefore,this study discusses the network model’s design and implementation of self-optimization Fuzzy Qlearning of the decision-making algorithm for slice handover.The algorithm’s performance is assessed by means of connection-level metrics considering the Quality of Service(QoS),specifically the probability of the new call to be blocked and the probability of a handoff call being dropped.Hence,within the network model,the call admission control(AC)method is modeled by leveraging supervised learning algorithm as prior knowledge of additional capacity.Moreover,to mitigate high complexity,the integration of fuzzy logic as well as Fuzzy Q-Learning is used to discretize state and the corresponding action spaces.The results generated from our proposal surpass the traditional methods without the use of supervised learning and fuzzy-Q learning. 展开更多
关键词 5g network slice fuzzy q-Learning slice handover
在线阅读 下载PDF
Surface micromorphology and nanostructures evolution in hybrid laser processes of slicing and polishing single crystal 4H-SiC 被引量:1
10
作者 Yuhang Li Zhe Zhang +6 位作者 Qi Song Haiyan Shi Yu Hou Song Yue Ran Wang Shunshuo Cai Zichen Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期235-244,共10页
Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach... Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach combining laser slicing and laser polishing technologies has been innovatively applied to increase utilization and decrease damage defects for single crystal 4H-SiC.Significant material utiliza-tion has been achieved in the hybrid laser processes,where material loss is reduced by 75%compared to that of conventional machining technologies.Without any special process control or additional treat-ment,an internally modified layer formed by laser slicing can easily separate the 4H-SiC crystals using an external force of about∼3.6 MPa.The modified layer has been characterized using a micro-Raman method to determine residual stress.The sliced surface exhibits a combination of smooth and coarse appearances around the fluvial morphology,with an average surface roughness of over S_(a) 0.89μm.An amorphous phase surrounds the SiC substrate,with two dimensions of lattice spacing,d=0.261 nm and d=0.265 nm,confirmed by high-resolution transmission electron microscopy(HRTEM).The creation of laser-induced periodic surface nanostructures in the laser-polished surface results in a flatter surface with an average roughness of less than S_(a) 0.22μm.Due to the extreme cooling rates and multiple thermal cy-cles,dissociation of Si-C bonding,and phase separation are identified on the laser-polished surface,which is much better than that of the machining surface.We anticipate that this approach will be applicable to other high-value crystals and will have promising viability in the aerospace and semiconductor industries. 展开更多
关键词 Laser polishing Silicon carbide Internal modification Laser slicing Surface quality Microstructure
原文传递
Strengthening network slicing for Industrial Internet with deep reinforcement learning
11
作者 Yawen Tan Jiadai Wang Jiajia Liu 《Digital Communications and Networks》 SCIE CSCD 2024年第4期863-872,共10页
Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structu... Industrial Internet combines the industrial system with Internet connectivity to build a new manufacturing and service system covering the entire industry chain and value chain.Its highly heterogeneous network structure and diversified application requirements call for the applying of network slicing technology.Guaranteeing robust network slicing is essential for Industrial Internet,but it faces the challenge of complex slice topologies caused by the intricate interaction relationships among Network Functions(NFs)composing the slice.Existing works have not concerned the strengthening problem of industrial network slicing regarding its complex network properties.Towards this end,we aim to study this issue by intelligently selecting a subset of most valuable NFs with the minimum cost to satisfy the strengthening requirements.State-of-the-art AlphaGo series of algorithms and the advanced graph neural network technology are combined to build the solution.Simulation results demonstrate the superior performance of our scheme compared to the benchmark schemes. 展开更多
关键词 Industrial Internet Network slicing Deep reinforcement learning Graph neural network
在线阅读 下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
12
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
在线阅读 下载PDF
Upper-Bound Limit Analysis of the Multi-Layer Slope Stability and Failure Mode Based on Generalized Horizontal Slice Method
13
作者 Huawei Zhang Changdong Li +5 位作者 Wenqiang Chen Ni Xie Guihua Wang Wenmin Yao Xihui Jiang Jingjing Long 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期929-940,共12页
Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent ... Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented.In view of the upper-bound limit analysis theory,the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe(mode A)with that below(mode B).In addition,the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained.Compared to the original method(Chen’s method),the GHSM can acquire more precise results,which takes into account the energy dissipation in the inner sliding soil mass.Moreover,the GHSM,limit equilibrium method(LEM)and numerical simulation method(NSM)are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case.The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°.It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes,not only mode A. 展开更多
关键词 stability and failure mode slope stability generalized horizontal slice method upperbound limit analysis energy dissipation geotechnical engineering.
原文传递
The Effect of Ginger Slice Acupoint Application Combined with Moxibustion on Chemotherapy-Induced Vomiting in Postoperative Breast Cancer Patients
14
作者 Xiangyu Guo 《Proceedings of Anticancer Research》 2024年第6期46-52,共7页
Objective: To investigate the effect of ginger slice acupoint application combined with moxibustion on chemotherapy-induced vomiting in postoperative breast cancer patients. Methods: Sixty postoperative breast cancer ... Objective: To investigate the effect of ginger slice acupoint application combined with moxibustion on chemotherapy-induced vomiting in postoperative breast cancer patients. Methods: Sixty postoperative breast cancer patients undergoing chemotherapy were randomly divided into an observation group and a control group, with 30 patients in each group. The control group received antiemetic treatment with dolasetron, while the observation group received ginger slice acupoint application combined with moxibustion in addition to antiemetic treatment to address chemotherapy-induced vomiting. The vomiting response on days 1-3 was compared between the two groups, along with R-INVR retching scores and patient satisfaction with the intervention methods. Results: On days 2 and 3 of chemotherapy, the observation group showed significantly less vomiting than the control group, with differences reaching a highly significant level (P < 0.001). On day 3, the R-INVR score in the observation group was significantly lower than that of the control group, with a highly significant difference (P < 0.001). The satisfaction score in the observation group was 8.38 ± 0.81, higher than the control group’s 7.65 ± 0.71, with a statistically significant difference (P < 0.05). Conclusion: Ginger slice acupoint application combined with moxibustion effectively alleviates chemotherapy-induced vomiting in postoperative breast cancer patients, improves quality of life, and is worth promoting clinically. 展开更多
关键词 Ginger slice acupoint application MOXIBUSTION Breast cancer Postoperative chemotherapy VOMITING Intervention effect
暂未订购
基于深度学习的混合语言源代码漏洞检测方法 被引量:1
15
作者 张学军 郭梅凤 +3 位作者 张潇 张斌 黄海燕 蔡特立 《湖南大学学报(自然科学版)》 北大核心 2025年第4期103-113,共11页
现有基于深度学习的源代码漏洞检测方法主要针对单一编程语言进行特征学习,难以对混合编程语言软件项目因代码单元间的关联和调用产生漏洞进行有效检测.因此,本文提出了一种基于深度学习的混合语言源代码漏洞检测方法DL-HLVD.首先利用B... 现有基于深度学习的源代码漏洞检测方法主要针对单一编程语言进行特征学习,难以对混合编程语言软件项目因代码单元间的关联和调用产生漏洞进行有效检测.因此,本文提出了一种基于深度学习的混合语言源代码漏洞检测方法DL-HLVD.首先利用BERT层将代码文本转换为低维向量,并将其作为双向门控循环单元的输入来捕获上下文特征,同时使用条件随机场来捕获相邻标签间的依赖关系;然后对混合语言软件中不同类型编程语言的函数进行命名实体识别,并将其和程序切片结果进行重构来减少代码表征过程中的语法和语义信息的损失;最后设计双向长短期记忆网络模型提取漏洞代码特征,实现对混合语言软件漏洞检测.在SARD和CrossVul数据集上的实验结果表明,DL-HLVD在两类漏洞数据集上识别软件漏洞的综合召回率达到了95.0%,F1值达到了93.6%,比最新的深度学习方法VulDeePecker、SySeVR、Project Achilles在各个指标上均有提升,说明DL-HLVD能够提高混合语言场景下源代码漏洞检测的综合性能. 展开更多
关键词 漏洞检测 命名实体识别 程序切片 混合语言
在线阅读 下载PDF
多层螺旋CT在肺结核鉴别及其活动性判断中的应用价值 被引量:1
16
作者 王文秀 纪俊雨 +1 位作者 郝蒙 刘树芳 《中国CT和MRI杂志》 2025年第4期87-89,共3页
目的探讨多层螺旋CT(MSCT)在肺结核鉴别及其活动性判断中的应用价值。方法选取2019年12月至2020年12月期间医院98例疑似肺结核的患者作为研究对象,全部患者入院时均接受MSCT检查和痰结核分枝杆菌培养,以痰结核分枝杆菌培养的诊断结果作... 目的探讨多层螺旋CT(MSCT)在肺结核鉴别及其活动性判断中的应用价值。方法选取2019年12月至2020年12月期间医院98例疑似肺结核的患者作为研究对象,全部患者入院时均接受MSCT检查和痰结核分枝杆菌培养,以痰结核分枝杆菌培养的诊断结果作为“金标准”,分析MSCT对肺结核、活动性肺结核的诊断结果与痰结核分枝杆菌培养诊断结果的一致性,评估MSCT检查分别对肺结核、活动性肺结核的诊断效能及应用价值。结果全部98例疑似肺结核患者中,经痰结核分枝杆菌培养检查,结果显示,阳性93例,占比为94.90%(93/98),阴性5例,占比为5.10%(5/98);活动性肺结核56例,占比为60.22%(56/93),非活动性肺结核37例,占比为39.78%(37/93);本次对98例疑似肺结核患者的研究发现,MSCT检查肺结核的准确率为91.84%(90/98),敏感度为93.55%(87/93),特异度为60.00%(3/5),阳性预测值97.75%(87/89),阴性预测值33.33%(3/9)。MSCT检查活动性肺结核的准确率为96.77%(90/93),敏感度为100.00%(56/56),特异度为97.29%(36/37),阳性预测值98.18%(54/55),阴性预测值94.74%(36/38)。结论使用MSCT检查能够准确的诊断患者是否患有肺结核、活动性肺结核,临床可推广使用。 展开更多
关键词 肺结核 活动性 多层螺旋CT 诊断
暂未订购
基于差异性隔离和复用的网络切片无线资源分配方案 被引量:4
17
作者 孙君 霭振宇 《通信学报》 北大核心 2025年第3期109-121,共13页
为研究网络切片无线资源复用,同时考虑复用、隔离和优先级三者之间的权衡问题,提出了一种基于差异性隔离和复用的网络切片无线资源分配方案。在现有文献成果基础上,重新定义复用增益和隔离因子2个参数,以复用增益和隔离因子构建加权和函... 为研究网络切片无线资源复用,同时考虑复用、隔离和优先级三者之间的权衡问题,提出了一种基于差异性隔离和复用的网络切片无线资源分配方案。在现有文献成果基础上,重新定义复用增益和隔离因子2个参数,以复用增益和隔离因子构建加权和函数,并引入切片优先级。为求解优化问题设计了复用隔离优先级无线接入(MIPWA)算法,该算法基于改进的遗传算法(GA),引入矩阵编码、轮盘赌选择和最优保留方法来解决问题。结果表明,MIPWA算法使切片1、切片2和切片3的隔离性能分别提高了66.37%、52.73%和21.16%,复用增益仅损失了5.82%、3.86%和3.50%。与仅考虑隔离的算法相比,复用增益分别提高了65.35%、52.74%和22.81%,隔离增益仅损失了2.85%、3.85%和1.86%。以复用增益为例,3个切片下MIPWA算法的优化结果要比传统GA分别高出5.07%、1.81%和1.4%。 展开更多
关键词 网络切片 资源分配 无线资源隔离 无线资源复用 矩阵编码
在线阅读 下载PDF
超高效液相色谱法测定柑橘类水果干片中的3种呋喃香豆素 被引量:1
18
作者 李兵 戚燕 +2 位作者 范赛 陈东 赵榕 《食品安全质量检测学报》 2025年第9期216-222,共7页
目的 建立超高效液相色谱-二极管阵列检测器法同时测定柑橘类水果干片中的3种呋喃香豆素。方法 试样经粉碎后分两次采用40m L乙酸乙酯超声提取40min,再采用20m L乙酸乙酯分两次涡旋10min提取残渣,合并提取液,30°C旋蒸至干。采用Acq... 目的 建立超高效液相色谱-二极管阵列检测器法同时测定柑橘类水果干片中的3种呋喃香豆素。方法 试样经粉碎后分两次采用40m L乙酸乙酯超声提取40min,再采用20m L乙酸乙酯分两次涡旋10min提取残渣,合并提取液,30°C旋蒸至干。采用Acquity UPLC HSS C18 SB色谱柱(2.1 mm×150 mm,1.8μm)分离,流速为0.3 mL/min,柱温30℃,检测波长为310 nm。流动相A为水和乙腈,梯度洗脱。结果 3种呋喃香豆素6’,7’-二羟基佛手素、环氧佛手柑素、佛手柑素分别在3.00~300.00μg/mL、4.32~432.00μg/mL、4.12~412.00μg/mL范围内具有良好的线性关系,相关系数大于0.999。检出限为0.09~0.17μg/g,定量限为0.31~0.57μg/g。在3个加标水平下,呋喃香豆素的平均回收率分别为94.4%~99.1%,相对标准偏差为2.7%~4.7%(n=6)。该方法能够使柑橘类水果干片中的3种呋喃香豆素在25min内很好地分离。在测定的18种柑橘类水果干片和干粉样品中,6’,7’-二羟基佛手素的含量范围为1.52~159.04μg/g,环氧佛手柑素的含量范围为49.57~60.09μg/g,佛手柑素的含量范围为1.49~248.71μg/g。结论 本方法具有良好的准确性和重复性,适用于柑橘类水果干片中3种呋喃香豆素含量的分析测定。 展开更多
关键词 柑橘类水果干片 呋喃香豆素 超高效液相色谱
原文传递
胃肠道间质瘤患者多层螺旋CT影像特征与Ki-67表达水平及预后的关系研究 被引量:3
19
作者 宋芹霞 王祥发 +1 位作者 史恒峰 李承慧 《中国CT和MRI杂志》 2025年第2期164-167,共4页
目的分析胃肠道间质瘤(GIST)患者多层螺旋CT(MSCT)影像特征与Ki-67表达水平及预后的关系。方法选取2017年8月~2018年8月本院收治的100例GIST患者为研究对象,采用免疫组织化检测Ki-67表达水平,根据Ki-67增殖指数分为低表达组(Ki-67增殖... 目的分析胃肠道间质瘤(GIST)患者多层螺旋CT(MSCT)影像特征与Ki-67表达水平及预后的关系。方法选取2017年8月~2018年8月本院收治的100例GIST患者为研究对象,采用免疫组织化检测Ki-67表达水平,根据Ki-67增殖指数分为低表达组(Ki-67增殖指数≤5%)和高表达组(Ki-67增殖指数>5%),比较两组MSCT影像特征,采用Logistic回归分析影响Ki-67表达水平的因素;根据术后5年生存情况将患者分为生存组和死亡组,比较两组MSCT影像特征,采用COX比例风险回归分析影响预后的因素。结果Ki-67增殖指数高表达组肿瘤直径>5cm、肿瘤形态不规则、密度不均匀、肿瘤向外生长发生率明显高于低表达组(P<0.05);Logistic回归结果显示:肿瘤直径、肿瘤形态、密度、肿瘤生长方式均是Ki-67增殖指数表达的影响因素(P<0.05);死亡组肿瘤直径>5cm、肿瘤形态不规则、密度不均匀、肿瘤向外生长发生率明显高于生存组(P<0.05);COX回归结果显示:肿瘤直径、肿瘤形态、密度、肿瘤生长方式均是患者预后的影响因素(P<0.05)。结论肿瘤直径、肿瘤形态不规则、密度不均匀、肿瘤向外生长等MSCT影像特征与GIST患者Ki-67表达水平及预后均与有关,提示MSCT影像特征可用于评估GIST患者的Ki-67表达情况和预后。 展开更多
关键词 胃肠道间质瘤 多层螺旋CT 影像特征 KI-67 预后 影响因素
暂未订购
三七切片设备振动特性分析 被引量:1
20
作者 王学军 李厚旭 韩鹏剑 《机械设计》 北大核心 2025年第3期78-85,共8页
文中针对一种新型旋转式三七切片设备运行状态不稳定、振动较大等问题,对切片设备进行振动特性分析。首先,对切片设备开展整机模态仿真分析,得到切片设备的固有频率和振型;其次,采用锤击法对切片设备进行整机模态试验,对比仿真结果和试... 文中针对一种新型旋转式三七切片设备运行状态不稳定、振动较大等问题,对切片设备进行振动特性分析。首先,对切片设备开展整机模态仿真分析,得到切片设备的固有频率和振型;其次,采用锤击法对切片设备进行整机模态试验,对比仿真结果和试验结果,验证了模态仿真的准确性。结合模态分析结果对切片设备不同部件振动特性进行分析,确定了切片设备的薄弱环节是支撑柱。通过更改支撑柱的材料及直径对切片设备进行减振优化并仿真验证,结果表明:随着支撑柱直径的增大,其工作振幅显著减小;优化后切片设备的3阶固有频率由74.38 Hz提高到113.57 Hz,避开切片设备最高工作频率,避免设备发生共振;支撑柱最大变形量减小了14.985 mm,提高了切片设备的稳定性。 展开更多
关键词 三七切片设备 旋转机械 振动特性 结构优化 固有特性
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部