During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to inv...During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to investigate the evolution of contact networks in mesoscale during the sliding process of slope. A slope model was established using the discrete element method (DEM), and influences of inter-particle frictional coefficients with four different values on?dynamic landslides were studied. Both macroscopic analysis on slope?landslide?and mesoanalysis on structure evolution of contact networks, including the?average degree, clustering coefficient?and N-cycle, were done during the process?of landslide. The analysis results demonstrate that: 1) with increasing inter-particle?frictional coefficients, the displacement of slope decreases and the stable angle of slope post-failure increases, which is smaller than the peak internal frictional angle;2) the average degree decreases with the increase of inter-particle frictional coefficient. When the displacement at the toe of the slope is smaller,?the average degree there changes more greatly with increasing inter-particle?frictional coefficient;3) during the initial stage of landslide, the clustering coefficient?reduces sharply, which may leads to easily slide of slope. As the landslide?going?on, however, the clustering coefficient?increases denoting increasing stability?with?increasing inter-particle frictional coefficients. When the inter-particle?frictional coefficient is smaller than 0.3, its variation can affect the clustering coefficient?and stable inclination of slope post-failure greatly;and 4) the number of?3-cycle increases, but 4-cycle and 5-cycle decrease with increasing inter-particle frictional coefficients.展开更多
Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior an...Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.展开更多
Surface morphology of Ceratocanthus beetle elytra was investigated for spike surface texture and its geometry using Scanning Electron Microscopy(SEM).Material properties were analyzed for both surface and cross-sectio...Surface morphology of Ceratocanthus beetle elytra was investigated for spike surface texture and its geometry using Scanning Electron Microscopy(SEM).Material properties were analyzed for both surface and cross-section of elytra using nano-indentation technique.The spike texture was significantly rigid compared with the non-textured zone;a bi-layer system of E and H was identified at the elytra cross-section.Normal load acting on spike texture during free-fall conditions was estimated analytically and deflection equation was derived.The design of spike texture with conical base was studied for minimization of deflection and volume using the Non-dominated Sorting Genetic Algorithm(NSGA-II)optimization technique,confirming the smart design of the natural solution.The frictional behavior of elytra was studied using fundamental tribology test and the role of the oriented spike texture was investigated for frictional anisotropy.Compression resistance of full beetle was evaluated for both conglobated and non-conglobated configuration and tensile strengths were compared using Brazilian test.Puncture and wear resistance of full elytra were characterized and correlated with its defense mechanism.展开更多
Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding...Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy.展开更多
The stress wave profile at the frictional interface is crucial for investigating the frictional process.This study modeled a brittle material interface with a micro-contact to analyze the fine stress wave structure as...The stress wave profile at the frictional interface is crucial for investigating the frictional process.This study modeled a brittle material interface with a micro-contact to analyze the fine stress wave structure associated with frictional slip.Employing the finite element simulation alongside the related wave theory and experiments,two new wave structures were indentified:A Mach cone symmetric to the frictional interface associated with incident plane wave propagation,and a new plane longitudinal wave generated across the entire frictional interface at the moment when the incident wave began to propagate.The time and space of its appearance implies that the overall response of the frictional interface precedes the local wave response of the medium.Consequently,a model involving characteristic line theory and the idea of Green’s function has been proposed for its occurrence.The analysis results show that these two new wave phenomena are independent of the fracture of micro-contacts at the interface;instead,the frictional interface effect may be responsible for the generation of such new wave structures.The measured wave profiles provide a proof for the existence of the new wave structures.These results display new wave phenomena,and suggest a wave profile for investigating the dynamic mechanical properties of the frictional interface.展开更多
This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element...This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element method.The adhesion behavior is described based on the Maugis-Dugdale model.The adhesion-driven conjugate gradient method is employed to calculate the distribution of unknown pressures,while the discrete convolution-fast Fourier transform is utilized to compute the deformations,surface electric and magnetic potentials as well as the subsurface stresses,electric displacements,and magnetic inductions.The goal of this study is to investigate the influences of adhesion parameter,friction coefficient,coating thickness,and surface electric and magnetic charge densities on contact behaviors,such as contact area and pressures,electric and magnetic potentials,and subsurface stresses.展开更多
This study investigated the micro-sliding frictional behavior of shale in fracturing fluids under varying operational conditions using Chang 7 shale oil reservoir core samples.Through systematic micro-sliding friction...This study investigated the micro-sliding frictional behavior of shale in fracturing fluids under varying operational conditions using Chang 7 shale oil reservoir core samples.Through systematic micro-sliding friction experiments,the characteristics and governing mechanisms of shale friction were elucidated.Complementary analyses were conducted to characterize the mineral composition,petrophysical properties,and micromorphology of the shale samples,providing insights into the relationship between microscopic structure and frictional response.In this paper,the characteristics and variation law of shale micro-sliding friction under different types of graphite materials as additives in LGF-80(Low-damage Guar Fluid)oil flooding recoverable fracturing fluid system were mainly studied.In addition,the finite element numerical simulation experiment of hydraulic fracturing was adopted to study the influence of the friction coefficient of natural fracture surfaces on fracture propagation and formation of the fracture network.The geometric complexity of fracture networks was systematically quantified under varying frictional coefficients of natural fracture surfaces through multi-parametric characterization and morphometric analysis.The research results show that graphite micro-particles reduce friction and drag.Based on this,this paper proposes a new idea of graphite micro-particles as an additive in the LGF-80 oil flooding recoverable fracturing fluid system to reduce friction on the fracture surface.展开更多
The distinctive characteristics exhibited by the aftershocks of Ms6.0 induced earthquakes in Changning,Sichuan,China,have attracted significant attention.The prevalence of salt rock(halite)in this area is closely asso...The distinctive characteristics exhibited by the aftershocks of Ms6.0 induced earthquakes in Changning,Sichuan,China,have attracted significant attention.The prevalence of salt rock(halite)in this area is closely associated with induced seismic events.The present study was conducted to examine the role of halite in frictional properties.To this end,laboratory measurements were taken for simulated fault gouge composed of halite.Slide-hold-slide(SHS)shear experiments were performed on gouges with grain size<106 mm at constant normal stress from 5 MPa to 30 MPa and constant shear velocity in the range of 1-10 mm/s.Halite gouge shows higher frictional strength and frictional healing rate than most minerals.The results reveal that the fault within halite can potentially generate intense seismic events and more significant aftershocks.An increase in normal stress leads to a reduction in frictional healing,with frictional strength initially increasing and then decreasing.The elevated shear velocity following fault activation facilitates fault dilation,diminishes the frictional strength of the fault,and contributes to fault healing during the inter-seismic period.The aforementioned findings will contribute to a comprehensive understanding of the potential for the healing property of induced seismicity on faults containing halite,particularly in the Changning region of China.展开更多
Rock avalanches frequently lead to catastrophic consequences due to their unpredictably high mobility.Numerous researchers have studied the shear behavior of granular materials under various conditions,attributing the...Rock avalanches frequently lead to catastrophic consequences due to their unpredictably high mobility.Numerous researchers have studied the shear behavior of granular materials under various conditions,attributing the high mobility to ultralow resistance.However,the underlying physical mechanism of frictional weakening remains unclear.This study utilizes the discrete element method(DEM)incorporating the fragment replacement model to simulate plane shear flows under various normal stresses(0.2 e1.2 MPa)and shear velocities(0.01e2 m/s).The findings reveal a localized shear band characterized by a J-shaped velocity profile and high granular temperature,and a concentrated distribution of weak contact forces forms at a shear velocity exceeding 0.1 m/s and normal stress above 0.6 MPa.Moreover,frictional weakening is observed with increasing normal stress from 0.2 MPa to 1.2 MPa and increasing shear velocity from 0.1 m/s to 2 m/s.The evolution of the steady-state friction coefficient can be divided into two stages:an initial stage(I)and a weakening stage(II).During stage I,the steady-state friction coefficient slightly increases until reaching a peak value.However,upon entering stage II,it gradually decreases and approaches an ultimate value.The velocity-and normal stress-dependent frictional weakening can be attributed to shear localization and embedded packing structure induced by particle breakage,respectively.Finally,an optimized m(I)model is proposed to capture the full evolution of the friction coefficient with the shear strain rate,which can improve our understanding of rock avalanche dynamics.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in ...The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.展开更多
In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement fricti...In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement frictional properties is proposed. A finite element model (FEM) of a rolling tire under steady state is established based on theoretical hydrodynamics and mechanics principles, in which factors, including tire type, water film thickness, pavement surface properties, and vehicle speed, are considered. With the FEM, braking distances under different operating conditions are calculated. Furthermore, the allowable water film thickness is determined by comparing braking distances calculated with friction management criteria and that required by road geometric design. The results show that the braking distance is affected by the above operating conditions. As a result, it is necessary to maintain consistency between geometric design braking distance requirements and pavement friction management to achieve safe road operations.展开更多
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were cha...Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were characterized simultaneously in this article. The results show that the as-deposited coatings consist of amorphous matrix and some precipitated nanocrystals, while the amorphous fraction and particle deformation as well as crystallization mechanism are significantly sensitive to the spraying parameters. The amorphous coatings express high microhardness and excellent wear resistance under dry frictional wear condition, which attributes to the inherent characteristic of amorphous phase and the dispersion strengthening of precipitated nanocrystals. The dominant wear mechanism of the amorphous coatings is fatigue wear accompanying with oxidative wear. In addition, the microhardness and wear resistance of the amorphous coatings were improved by optimizing spraying parameters, owing to the effect of both structural character and proper proportional of amorphous and nanocrystals fraction.展开更多
High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 We...High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 Wenchuan earthquake. The ultimate purpose of this study is to reproduce this earthquake by modeling based on measured frictional properties. Dry gouge of about 1 mm in thickness was deformed dry at slip rates of 0.01 to 1.3 m/s and at normal stresses of 0.61 to 3.04 MPa, using a rotary-shear high-velocity frictional testing machine. The gouge displays slip weakening behavior as initial peak friction decays towards steady-state values after a given displacement. Both peak friction and steady-state friction remain high at slow slip rates are exam- ined and gouge only exhibits dramatic weakening at high slip rates, with steady-state friction coefficient values of about 0.1 to 0.2. Specific fracture energy ranges from 1 to 4 MN/m in our results and this is of the same order as seismically determined values. Low friction coefficients measured on experimental faults are in broad agree- ment with lack of thermal anomaly observed from temperature measurements in WFSD-1 drill hole (Wenchuan Earthquake Fault Scientific Drilling Project), which can be explained by even smaller friction coefficient for the Wenchuan earthquake fault. High-velocity friction experiments with pore water needs to be done to see if even smaller friction is attained or not. Shiny slickenside surfaces form at high slip rates, but not at slow slip rates. Slip zone with slickenside surface changes its color to dark brown and forms duplex-like microstructures, which are similar to those microstructures found in the fault gouges from the Hongkou outcrop. Detailed comparisons between experimentally deformed gouge samples and WFSD drill cores in the future will reveal how much we could reproduce the dynamic weakening processes in operation in fault zones during Wenchuan earthquake at present.展开更多
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the friction...The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.展开更多
An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are tre...An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.展开更多
Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In...Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In this work, this mechanism is combined with a depth-averaged model to simulate the long runout of landslides in the condition of deformation. Some important factors that influence frictional heating and thermal pressurization within the shear zone are further considered, including velocity profile and pressurization coefficient. In order to solve the coupled equations, a combined computational method based on the finite volume method and quadratic upwind interpolation for convective kinematics scheme is proposed. Several numerical tests are performed to demonstrate the feasibility of the computational scheme, the influence of thermal pressurization on landslide run-out, and the potential of the model to simulate an actual landslide.展开更多
This paper had investigated the effects of surface wettability on the frictional resistance of turbulent horizontal flow for tap water in five pipes made of various materials and four kinds of liquids in a polytetrafl...This paper had investigated the effects of surface wettability on the frictional resistance of turbulent horizontal flow for tap water in five pipes made of various materials and four kinds of liquids in a polytetrafluoroethylene(PTFE) pipe,with the same inner diameter of 14 mm. Pressure drops were measured under different flow rates through an experimental flow loop. The contact angles and adhesion work of liquids in contact with pipe surfaces were determined using a contact angle meter. Based on the dimension and regression analyses, two kinds of modified relationships between the frictional coefficient and the surface wettability were established according to the measured results corresponding to tap water in five pipes and four liquids in PTFE pipe. The experimental results show that the surface wettability has some influence on frictional coefficient of the studied liquids flowing in macroscale pipes, and the frictional coefficient decreases with the increase of the contact angle at the same Reynolds number. Meanwhile the effect of wettability on the hydrophobic surface is greater than that on the hydrophilic one. The frictional coefficients predicted by the modified formulas have verified to be in good agreement with the experimental values, the relative errors of which are within ±6% and ±3% for the tap water flowing in five different pipes and four kinds of liquids flowing in PTFE pipe, respectively.展开更多
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km ...This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243°or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coeffcient of around 0.6 to very low steady-state friction coeffcient of 0.1–0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.展开更多
In this work,computational fuid dynamics(CFD)is used to study elbow erosion due to a gas-solid two-phase fow.In particular,the direct simulation Monte Carlo(DSMC)method is used to study the impact of inter-particle co...In this work,computational fuid dynamics(CFD)is used to study elbow erosion due to a gas-solid two-phase fow.In particular,the direct simulation Monte Carlo(DSMC)method is used to study the impact of inter-particle collision on the erosion behavior.The two-way coupled Euler-Lagrange method is used to solve the gas-solid fow,and the DSMC method is used to consider the collision behavior between particles.The efects of key factors,such as the particle concentration distribution and inter-particle collision,on the erosion ratio are evaluated and discussed.The efectiveness of the method is verifed from experimental data.The results show that the inter-particle collision signifcantly infuences the particle movement path and erosion ratio.When the inter-particle collision is considered,the maximum erosion position is ofset.The erosion model proposed by Oka et al.,who used the DSMC method,agrees best with the experimental data,and the average percentage error decreases from 39.2 to 27.4%.展开更多
文摘During the process of landslide, its dynamic mechanism is important to understand and predict these kinds of natural hazard. In this paper, a new method, based on concepts of complex networks, has been proposed to investigate the evolution of contact networks in mesoscale during the sliding process of slope. A slope model was established using the discrete element method (DEM), and influences of inter-particle frictional coefficients with four different values on?dynamic landslides were studied. Both macroscopic analysis on slope?landslide?and mesoanalysis on structure evolution of contact networks, including the?average degree, clustering coefficient?and N-cycle, were done during the process?of landslide. The analysis results demonstrate that: 1) with increasing inter-particle?frictional coefficients, the displacement of slope decreases and the stable angle of slope post-failure increases, which is smaller than the peak internal frictional angle;2) the average degree decreases with the increase of inter-particle frictional coefficient. When the displacement at the toe of the slope is smaller,?the average degree there changes more greatly with increasing inter-particle?frictional coefficient;3) during the initial stage of landslide, the clustering coefficient?reduces sharply, which may leads to easily slide of slope. As the landslide?going?on, however, the clustering coefficient?increases denoting increasing stability?with?increasing inter-particle frictional coefficients. When the inter-particle?frictional coefficient is smaller than 0.3, its variation can affect the clustering coefficient?and stable inclination of slope post-failure greatly;and 4) the number of?3-cycle increases, but 4-cycle and 5-cycle decrease with increasing inter-particle frictional coefficients.
基金supported by the International Collaborative Research Program(fundamental research,2021-2023)funded by Korea Institute of Civil Engineering and Building Technology(KICT).
文摘Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.
基金supported by Ministero Universitàe Ricerca(MUR-PRIN 20222022ATZCJN AMPHYBIA)CUP N.E53D23003040006Ministero dell'istruzione dell'universitàe della ricerca(MIUR-PON 2018 PROSCAN)CUP N.E96C18000440008European Union NextGenerationEU PNRR Spoke 7 CN00000013 HPC CUP N.E63C22000970007.
文摘Surface morphology of Ceratocanthus beetle elytra was investigated for spike surface texture and its geometry using Scanning Electron Microscopy(SEM).Material properties were analyzed for both surface and cross-section of elytra using nano-indentation technique.The spike texture was significantly rigid compared with the non-textured zone;a bi-layer system of E and H was identified at the elytra cross-section.Normal load acting on spike texture during free-fall conditions was estimated analytically and deflection equation was derived.The design of spike texture with conical base was studied for minimization of deflection and volume using the Non-dominated Sorting Genetic Algorithm(NSGA-II)optimization technique,confirming the smart design of the natural solution.The frictional behavior of elytra was studied using fundamental tribology test and the role of the oriented spike texture was investigated for frictional anisotropy.Compression resistance of full beetle was evaluated for both conglobated and non-conglobated configuration and tensile strengths were compared using Brazilian test.Puncture and wear resistance of full elytra were characterized and correlated with its defense mechanism.
基金the funding supported from the National Research Foundation of Korea(NRF)grant funded by the Korea Government MSIT(No.2021R1C1C1006003).
文摘Understanding frictional anisotropy,which refers to the variation in frictional resistance based on the shear direction,is crucial for optimizing the friction angle between a bio-inspired structure and the surrounding soil.Previous studies focused on estimating the interface frictional anisotropy mobilized by snakeskin-inspired textured surfaces and sand under monotonic shear loading conditions.However,there is a need to estimate interface frictional anisotropy under repetitive shear loads.In this study,a series of repetitive direct shear(DS)tests are performed with snakeskin-inspired textured surfaces under a constant vertical stress and two shear directions(cranial first half→caudal second half or caudal first half→cranial second half).The results show that(1)mobilized shear stress increases with the number of shearing cycles,(2)cranial shearing(shearing against the scales)consistently produces a higher shear resistance and less contractive behavior than caudal shearing(shearing along the scales),and(3)a higher scale height or smaller scale length of the surface yields a higher interface friction angle across all shearing cycles.Further analysis reveals that the gap between the cranial and caudal shear zones of the interface friction angle as a function of L/H(i.e.the ratio of scale length L to scale height H)continues to decrease as the number of shearing cycles approaches asymptotic values.The directional frictional resistance(DFR)decreases as the number of shearing cycles increases.Furthermore,the discussion covers the impact of initial relative density,vertical stress,and the number of shearing cycles on interface frictional anisotropy.
基金supported by the National Natural Science Foundation of China(Grant No.12272127)the Construction Project of Double First Class in Safety Discipline of the Universities of Henan Province(Grant No.AQ20230751).
文摘The stress wave profile at the frictional interface is crucial for investigating the frictional process.This study modeled a brittle material interface with a micro-contact to analyze the fine stress wave structure associated with frictional slip.Employing the finite element simulation alongside the related wave theory and experiments,two new wave structures were indentified:A Mach cone symmetric to the frictional interface associated with incident plane wave propagation,and a new plane longitudinal wave generated across the entire frictional interface at the moment when the incident wave began to propagate.The time and space of its appearance implies that the overall response of the frictional interface precedes the local wave response of the medium.Consequently,a model involving characteristic line theory and the idea of Green’s function has been proposed for its occurrence.The analysis results show that these two new wave phenomena are independent of the fracture of micro-contacts at the interface;instead,the frictional interface effect may be responsible for the generation of such new wave structures.The measured wave profiles provide a proof for the existence of the new wave structures.These results display new wave phenomena,and suggest a wave profile for investigating the dynamic mechanical properties of the frictional interface.
基金support from the National Natural Science Foundation of China(12102085)the Postdoctoral Science Foundation of China(2023M730504)+2 种基金the Sichuan Province Regional Innovation and Cooperation Project(2024YFHZ0210)supported by the European Union-NextGenerationEU through the Italian Ministry of University and Research under the following programs:(NM)PRIN2022(Projects of Relevant National Interest)grant no.2022SJ8HTC-Electroactive Gripper for Micro-Object Manipulation(ELFIN)(NM)PRIN2022 PNRR(Projects of Relevant National Interest)grant no.P2022MAZHX-Tribological Modeling for Sustainable Design of Industrial Frictional Interfaces(TRIBOSCORE).
文摘This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element method.The adhesion behavior is described based on the Maugis-Dugdale model.The adhesion-driven conjugate gradient method is employed to calculate the distribution of unknown pressures,while the discrete convolution-fast Fourier transform is utilized to compute the deformations,surface electric and magnetic potentials as well as the subsurface stresses,electric displacements,and magnetic inductions.The goal of this study is to investigate the influences of adhesion parameter,friction coefficient,coating thickness,and surface electric and magnetic charge densities on contact behaviors,such as contact area and pressures,electric and magnetic potentials,and subsurface stresses.
文摘This study investigated the micro-sliding frictional behavior of shale in fracturing fluids under varying operational conditions using Chang 7 shale oil reservoir core samples.Through systematic micro-sliding friction experiments,the characteristics and governing mechanisms of shale friction were elucidated.Complementary analyses were conducted to characterize the mineral composition,petrophysical properties,and micromorphology of the shale samples,providing insights into the relationship between microscopic structure and frictional response.In this paper,the characteristics and variation law of shale micro-sliding friction under different types of graphite materials as additives in LGF-80(Low-damage Guar Fluid)oil flooding recoverable fracturing fluid system were mainly studied.In addition,the finite element numerical simulation experiment of hydraulic fracturing was adopted to study the influence of the friction coefficient of natural fracture surfaces on fracture propagation and formation of the fracture network.The geometric complexity of fracture networks was systematically quantified under varying frictional coefficients of natural fracture surfaces through multi-parametric characterization and morphometric analysis.The research results show that graphite micro-particles reduce friction and drag.Based on this,this paper proposes a new idea of graphite micro-particles as an additive in the LGF-80 oil flooding recoverable fracturing fluid system to reduce friction on the fracture surface.
基金supported by the National Key Research and Development Project(Grant No.2023YFE0110900)the National Natural Science Foundation of China(Grant Nos.42320104003 and 42077247).
文摘The distinctive characteristics exhibited by the aftershocks of Ms6.0 induced earthquakes in Changning,Sichuan,China,have attracted significant attention.The prevalence of salt rock(halite)in this area is closely associated with induced seismic events.The present study was conducted to examine the role of halite in frictional properties.To this end,laboratory measurements were taken for simulated fault gouge composed of halite.Slide-hold-slide(SHS)shear experiments were performed on gouges with grain size<106 mm at constant normal stress from 5 MPa to 30 MPa and constant shear velocity in the range of 1-10 mm/s.Halite gouge shows higher frictional strength and frictional healing rate than most minerals.The results reveal that the fault within halite can potentially generate intense seismic events and more significant aftershocks.An increase in normal stress leads to a reduction in frictional healing,with frictional strength initially increasing and then decreasing.The elevated shear velocity following fault activation facilitates fault dilation,diminishes the frictional strength of the fault,and contributes to fault healing during the inter-seismic period.The aforementioned findings will contribute to a comprehensive understanding of the potential for the healing property of induced seismicity on faults containing halite,particularly in the Changning region of China.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFC3008300 and 2023YFC3008302)the National Natural Science Foundation of China(Grant No.U22A20603).
文摘Rock avalanches frequently lead to catastrophic consequences due to their unpredictably high mobility.Numerous researchers have studied the shear behavior of granular materials under various conditions,attributing the high mobility to ultralow resistance.However,the underlying physical mechanism of frictional weakening remains unclear.This study utilizes the discrete element method(DEM)incorporating the fragment replacement model to simulate plane shear flows under various normal stresses(0.2 e1.2 MPa)and shear velocities(0.01e2 m/s).The findings reveal a localized shear band characterized by a J-shaped velocity profile and high granular temperature,and a concentrated distribution of weak contact forces forms at a shear velocity exceeding 0.1 m/s and normal stress above 0.6 MPa.Moreover,frictional weakening is observed with increasing normal stress from 0.2 MPa to 1.2 MPa and increasing shear velocity from 0.1 m/s to 2 m/s.The evolution of the steady-state friction coefficient can be divided into two stages:an initial stage(I)and a weakening stage(II).During stage I,the steady-state friction coefficient slightly increases until reaching a peak value.However,upon entering stage II,it gradually decreases and approaches an ultimate value.The velocity-and normal stress-dependent frictional weakening can be attributed to shear localization and embedded packing structure induced by particle breakage,respectively.Finally,an optimized m(I)model is proposed to capture the full evolution of the friction coefficient with the shear strain rate,which can improve our understanding of rock avalanche dynamics.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project(20060287019)supported by the Research Fund for Doctoral Program of Higher Education of ChinaProject(kjsmcx07001)supported by the Opening Research Fund of Jiangsu Key Laboratory of Tribology,ChinaProject(BK2010267)supported by the Jiangsu Provincial Natural Science Foundation of Jiangsu Province,China
文摘The NiCoCrAlY coatings strengthened by three nano-particles with the same addition were prepared on a Ni-base super alloy using laser cladding technique. The dry frictional wear behaviors of the coatings at 500 ℃ in static air were investigated. The comparison was made with the coating without nano-particles. The results show that the wear mechanism of the NiCoCrAlY coatings with nano-particles, like the coating without nano-particles, is the delamination wear due to the strong plastic deformation and oxidative wear. However, the frictional coefficient of the coatings increases and presents the decrease trend with the increase of sliding distance after adding nano-particles. Moreover, the wear rate of the coatings with nano-particles is only 34.0%-64.5% of the coating without nano-particles. Among the three nano-particles, the improvement of nano-SiC on the high temperature wear resistance of the coating is the most significant.
基金The Research and Innovation Foundation for Graduate Students in Jiangsu Province(No.CX10B_070Z)
文摘In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement frictional properties is proposed. A finite element model (FEM) of a rolling tire under steady state is established based on theoretical hydrodynamics and mechanics principles, in which factors, including tire type, water film thickness, pavement surface properties, and vehicle speed, are considered. With the FEM, braking distances under different operating conditions are calculated. Furthermore, the allowable water film thickness is determined by comparing braking distances calculated with friction management criteria and that required by road geometric design. The results show that the braking distance is affected by the above operating conditions. As a result, it is necessary to maintain consistency between geometric design braking distance requirements and pavement friction management to achieve safe road operations.
基金Beijing Municipal Education Commission (00900054R5004)
文摘Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were characterized simultaneously in this article. The results show that the as-deposited coatings consist of amorphous matrix and some precipitated nanocrystals, while the amorphous fraction and particle deformation as well as crystallization mechanism are significantly sensitive to the spraying parameters. The amorphous coatings express high microhardness and excellent wear resistance under dry frictional wear condition, which attributes to the inherent characteristic of amorphous phase and the dispersion strengthening of precipitated nanocrystals. The dominant wear mechanism of the amorphous coatings is fatigue wear accompanying with oxidative wear. In addition, the microhardness and wear resistance of the amorphous coatings were improved by optimizing spraying parameters, owing to the effect of both structural character and proper proportional of amorphous and nanocrystals fraction.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2008A03)Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS fellows to the first author (T.Togo) and a Grant-in-Aid for young scientists(B) 201007605,and by a 2009 FGI Grant-in-Aid of Fukada Geological Institute
文摘High-velocity friction experiments were conducted on clayey fault gouge collected from Hongkou outcrop of Beichuan fault, located at the southwestern part of Longmenshan fault system that caused the disastrous 2008 Wenchuan earthquake. The ultimate purpose of this study is to reproduce this earthquake by modeling based on measured frictional properties. Dry gouge of about 1 mm in thickness was deformed dry at slip rates of 0.01 to 1.3 m/s and at normal stresses of 0.61 to 3.04 MPa, using a rotary-shear high-velocity frictional testing machine. The gouge displays slip weakening behavior as initial peak friction decays towards steady-state values after a given displacement. Both peak friction and steady-state friction remain high at slow slip rates are exam- ined and gouge only exhibits dramatic weakening at high slip rates, with steady-state friction coefficient values of about 0.1 to 0.2. Specific fracture energy ranges from 1 to 4 MN/m in our results and this is of the same order as seismically determined values. Low friction coefficients measured on experimental faults are in broad agree- ment with lack of thermal anomaly observed from temperature measurements in WFSD-1 drill hole (Wenchuan Earthquake Fault Scientific Drilling Project), which can be explained by even smaller friction coefficient for the Wenchuan earthquake fault. High-velocity friction experiments with pore water needs to be done to see if even smaller friction is attained or not. Shiny slickenside surfaces form at high slip rates, but not at slow slip rates. Slip zone with slickenside surface changes its color to dark brown and forms duplex-like microstructures, which are similar to those microstructures found in the fault gouges from the Hongkou outcrop. Detailed comparisons between experimentally deformed gouge samples and WFSD drill cores in the future will reveal how much we could reproduce the dynamic weakening processes in operation in fault zones during Wenchuan earthquake at present.
基金This work was supported by the National Natural Science Foundation of China(grant No.50475164 and 50535050)by the Science Foundation of China University of Mining and Technology(grant No.2005B034).
文摘The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.
基金supported by the National Natural Science Foundation of China(11372018 and 11172019)
文摘An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.
基金supported by the National Natural Science Foundation of China (Grant No. 41790433)NSFC-ICIMOD (Grant No. 41661144041)+1 种基金Key Research and Development Projects of Sichuan Province (2017SZ0041)CAS "Light of West China" Program
文摘Some of the remarkable characteristics of natural landslides, such as surprisingly long travel distances and high velocities, have been attributed to the mechanisms of frictional heating and thermal pressurization. In this work, this mechanism is combined with a depth-averaged model to simulate the long runout of landslides in the condition of deformation. Some important factors that influence frictional heating and thermal pressurization within the shear zone are further considered, including velocity profile and pressurization coefficient. In order to solve the coupled equations, a combined computational method based on the finite volume method and quadratic upwind interpolation for convective kinematics scheme is proposed. Several numerical tests are performed to demonstrate the feasibility of the computational scheme, the influence of thermal pressurization on landslide run-out, and the potential of the model to simulate an actual landslide.
基金supported by the National Major Science&Technology Project of China(No.2016ZX05025004-005)the Science&Technology Project of Sichuan Province(Grant No.2015JY0099)
文摘This paper had investigated the effects of surface wettability on the frictional resistance of turbulent horizontal flow for tap water in five pipes made of various materials and four kinds of liquids in a polytetrafluoroethylene(PTFE) pipe,with the same inner diameter of 14 mm. Pressure drops were measured under different flow rates through an experimental flow loop. The contact angles and adhesion work of liquids in contact with pipe surfaces were determined using a contact angle meter. Based on the dimension and regression analyses, two kinds of modified relationships between the frictional coefficient and the surface wettability were established according to the measured results corresponding to tap water in five pipes and four liquids in PTFE pipe. The experimental results show that the surface wettability has some influence on frictional coefficient of the studied liquids flowing in macroscale pipes, and the frictional coefficient decreases with the increase of the contact angle at the same Reynolds number. Meanwhile the effect of wettability on the hydrophobic surface is greater than that on the hydrophilic one. The frictional coefficients predicted by the modified formulas have verified to be in good agreement with the experimental values, the relative errors of which are within ±6% and ±3% for the tap water flowing in five different pipes and four kinds of liquids flowing in PTFE pipe, respectively.
基金supported by State Key Laboratory of Earthquake Dynamics (projectNo. LED2010A05, LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD)
文摘This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaoji-aqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243°or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coeffcient of around 0.6 to very low steady-state friction coeffcient of 0.1–0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.
基金The authors acknowledge the fnancial support by the National Natural Science Foundation of China(No.51874340)by the Shandong Provincial Natural Science Foundation,China(No.ZR2018MEE004).
文摘In this work,computational fuid dynamics(CFD)is used to study elbow erosion due to a gas-solid two-phase fow.In particular,the direct simulation Monte Carlo(DSMC)method is used to study the impact of inter-particle collision on the erosion behavior.The two-way coupled Euler-Lagrange method is used to solve the gas-solid fow,and the DSMC method is used to consider the collision behavior between particles.The efects of key factors,such as the particle concentration distribution and inter-particle collision,on the erosion ratio are evaluated and discussed.The efectiveness of the method is verifed from experimental data.The results show that the inter-particle collision signifcantly infuences the particle movement path and erosion ratio.When the inter-particle collision is considered,the maximum erosion position is ofset.The erosion model proposed by Oka et al.,who used the DSMC method,agrees best with the experimental data,and the average percentage error decreases from 39.2 to 27.4%.