A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP)...A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP) parameter and the uncertainty noise. The choice of the proper performance parameter provided the single-valued mapping with the missed detection probability estimates the probability of failure. The desirable characteristics of the residual sensitivity matrix are exploited to increase the efficiency for identifying erroneous observations. The algorithm can be used to support the performance specification and the efficient calculation of the integrity monitoring process. The simulation for non-precision approach (NPA) validates both the viability and the effectiveness of the proposed algorithm.展开更多
This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase...This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation.展开更多
Navigation system integrity monitoring is crucial for mission(e.g.safety)critical applications.Receiver autonomous integrity monitoring(RAIM)based on consistency checking of redundant measurements is widely used for m...Navigation system integrity monitoring is crucial for mission(e.g.safety)critical applications.Receiver autonomous integrity monitoring(RAIM)based on consistency checking of redundant measurements is widely used for many applications.However,there are many challenges to the use of RAIM associated with multiple constellations and applications with very stringent requirements.This paper discusses two positioning techniques and corresponding integrity monitoring methods.The first is the use of single frequency pseudorange-based dual constellations.It employs a new cross constellation single difference scheme to benefit from the similarities while addressing the differences between the constellations.The second technique uses dual frequency carrier phase measurements from GLONASS and the global positioning system for precise point positioning.The results show significant improvements both in positioning accuracy and integrity monitoring as a result of the use of two constellations.The dual constellation positioning and integrity monitoring algorithms have the potential to be extended to multiple constellations.展开更多
Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm i...Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.展开更多
In this paper,the integrity monitoring algorithm based on a Kalman filter(KF)based rate detector is employed in the vector tracking loop(VTL)of the Global Positioning System(GPS)receiver.In the VTL approach,the extend...In this paper,the integrity monitoring algorithm based on a Kalman filter(KF)based rate detector is employed in the vector tracking loop(VTL)of the Global Positioning System(GPS)receiver.In the VTL approach,the extended Kalman filter(EKF)simultaneously tracks the received signals and estimates the receiver’s position,velocity,etc.In contrast to the scalar tracking loop(STL)that uses the independent parallel tracking loop approach,the VTL technique uses the correlation of each satellite signal and user dynamics and thus reduces the risk of loss lock of signals.Although the VTL scheme provides several important advantages,the failure of tracking in one channel may affect the entire system and lead to loss of lock on all satellites.The integrity monitoring algorithm can be adopted for robustness enhancement.In general,the standard integrity monitoring algorithm can timely detect the step type erroneous signals.However,in the presence of ramp type slowly growing erroneous signals,detection of such type of error takes much more time since the error cannot be detected until the cumulative exceeds the specified threshold.The integrity monitoring based on the rate detector possesses good potential for resolving such problem.The test statistic based on the pseudorange residual in association with the EKF is applied for determination of whether the test statistic exceeds the allowable threshold values.The fault detection and exclusion(FDE)mechanism can then be employed to exclude the hazardous erroneous signals for the abnormal satellites to assure normal operation of GPS receivers.Feasibility of the integrity monitoring algorithm based on the EKF based rate detector will be demonstrated.Performance assessment and evaluation will be presented.展开更多
Nowadays, sensor networks are widely installed around the world. Typical sensors provide data for healthcare, energy management, environmental monitoring, etc. In the future sensors will become a part of critical infr...Nowadays, sensor networks are widely installed around the world. Typical sensors provide data for healthcare, energy management, environmental monitoring, etc. In the future sensors will become a part of critical infrastructures. In such a scenario the network operator has to monitor the integrity of the network devices, otherwise the trustworthiness of the whole system is questionable. The problem is that every integrity protocol needs a secure channel between the devices. Therefore, we will introduce a covert channel for hidden transportation of integrity monitoring messages. The covert channel enables us to hide integrity check messages embedded into regular traffic without giving potential attackers a hint on the used integrity protocol.展开更多
The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level t...The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level to the single epoch level.Current studies primarily focus on finding a conservative Number of Effective Samples(NES)as a risk mapping factor.However,considering that the NES varies with the observation environment and the type of the fault mode,applying a fixed NES can constrain the performance of the algorithm.To address this issue,the continuity and integrity risks over the operational exposure time are analyzed and bounded based on all epochs within the exposure time.A more adaptable method for continuity and integrity budget allocation over the operational exposure time is presented,capable of monitoring the continuity and integrity risks over the recent operational exposure time in real time,and dynamically adjusting the allocation values based on the current observation environment.Simulation results demonstrate that,compared with the allocation method based on a fixed NES,ARAIM based on the proposed allocation method exhibits superior performance in terms of the availability.At an FD execution frequency equal to the required Time-To-Alert(TTA),the dual-constellation H-ARAIM provides 100%of the global coverage with 99.5%availability of the RNP 0.1 service,and the dual-constellation V-ARAIM provides 86.38%of the global coverage with 99.5%availability of the LPV-200 service.展开更多
For the integrity monitoring of a multi-source PNT(Positioning,Navigation,and Timing)resilient fusion navigation system,a theoretical framework of multi-level autonomous integrity monitoring is proposed.According to t...For the integrity monitoring of a multi-source PNT(Positioning,Navigation,and Timing)resilient fusion navigation system,a theoretical framework of multi-level autonomous integrity monitoring is proposed.According to the mode of multi-source fusion navigation,the framework adopts the top-down logic structure and establishes the navigation source fault detection model based on the multi-combination separation residual method to detect and isolate the fault source at the system level and subsystem level.For isolated non-redundant navigation sources,the system level recovery verification model is used.For the isolated multi-redundant navigation sources,the sensor fault detection model optimized with the dimension-expanding matrix is used to detect and isolate the fault sensors,and the isolated fault sensors are verified in real-time.Finally,according to the fault detection and verification results at each level,the observed information in the fusion navigation solution is dynamically adjusted.On this basis,the integrity risk dynamic monitoring tree is established to calculate the Protection Level(PL)and evaluate the integrity of the multi-source integrated navigation system.The autonomous integrity monitoring method proposed in this paper is tested using a multi-source navigation system integrated with Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),Long Baseline Location(LBL),and Ultra Short Baseline Location(USBL).The test results show that the proposed method can effectively isolate the fault source within 5 s,and can quickly detect multiple faulty sensors,ensuring that the positioning accuracy of the fusion navigation system is within 5 m,effectively improving the resilience and reliability of the multi-source fusion navigation system.展开更多
Integrity monitoring for precise point positioning is critical for safety-related applications.With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles,the integrity m...Integrity monitoring for precise point positioning is critical for safety-related applications.With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles,the integrity monitoring method of high-precision positioning has become an essential requirement.While high precision Global Navigation Satellite Systems(GNSS)positioning is widely used in such applications,there are still many difculties in the integrity monitoring method for the multi-frequency multi-GNSS undiferenced and uncombined Precise Point Positioning(PPP).The main difculties are caused by using the measurements of multiple epochs in PPP.Based on the baseline Multiple Hypothesis Solution Separation(MHSS)Advanced Receiver Autonomous Integrity Monitoring(ARAIM)algorithm,this paper discusses the feasibility of the pseudorange-based baseline ARAIM method on the single-epoch PPP based on Real-Time Kinematic(RTK)networks(PPP-RTK)framework to overcome these difculties.In addition,a new scheme is proposed to transfer the conventional PPP process into the single-epoch PPP-RTK framework.The simulation results using the proposed model are analyzed in this study.The Protection Levels(PLs)estimated by PPP Wide-lane Ambiguity Resolution(PPP-WAR)model with regional corrections can reach the meter level and the PLs estimated by PPP Ambiguity Resolution(PPP-AR)and PPP-RTK models are usually the sub-meter level.Given a horizontal Alert Limit(AL)of 1.5 m,the global coverage of availability above 99.9%for PPP-WAR,PPP-AR,and PPP-RTK can reach 92.6%,99.4%,and 99.7%respectively.The results using real kinematic data also show that tight PLs can be achieved when the observation conditions are good.展开更多
The wide area precise positioning system(WAPPS)is a high-precision positioning system based on a global navigation satellite system.Using a GEO satellite or a communication network,it provides users,in its service are...The wide area precise positioning system(WAPPS)is a high-precision positioning system based on a global navigation satellite system.Using a GEO satellite or a communication network,it provides users,in its service area,with real-time satellite orbit,clock,and other corrections.Users can achieve centimeter-level static positioning or decimeter-level kinematic positioning by precise point positioning.With the demands for applications of both high-precision and safety of life in real time,WAPPS is facing urgent needs to improve its service integrity.This study presents a real-time integrity monitoring approach for WAPPS.Using dual-frequency ionosphere-free corrections of GPS and BDS,along with monitor station data,related error models are established and the integrity monitoring is achieved,based on the analysis of satellite corrected residuals.In addition,satellite faults are simulated for performance verification.The results show that the algorithm can monitor both step and drift faults effectively and alert users in time.展开更多
Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic s...Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.展开更多
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st...For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.展开更多
Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national e...Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.展开更多
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, mo...The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.展开更多
An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client co...An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.展开更多
In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simulta...In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simultaneous acquisition, a mechanism of multi-process andinter-process communication, the integrating problem of signal acquisition, the data dynamicmanagement and network-based configuration in the embedded condition monitoring system is solved. Itoffers the input function of monitoring information for network-based condition monitoring and afault diagnosis system.展开更多
With the continuous development of computer technology and information communication technology, technology automation and related technologies are also gradually applied to building construction systems, providing mo...With the continuous development of computer technology and information communication technology, technology automation and related technologies are also gradually applied to building construction systems, providing more convenient travel safety systems for people. The emergence of intelligent building systems has opened a new era for the development of buildings. Intelligent building is the product of the combination of construction technology, network technology and communication technology in the new era. It not only provides new technology for the construction system, but also enables residents to have a more comfortable and safe living environment. Based on the overview of intelligent building system, this paper discusses the security problems encountered in the system operation process, and further analyzes the importance of network communication technology and firewall technology.展开更多
The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large...The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.展开更多
Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. I...Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. In this case, the receiver autonomous integrity monitoring (RAIM) method earmot exclude faulty satellite. In order to improve the performance of RAIM method and obtain the reliable positioning results with five satellites, the series of receiver clock bias (RCB) is regarded as one useful satellite and used to aid RAIM method. From the point of nonlinear series, a grey-Markov model for predicting the RCB series based on grey theory and Markov chain is presented. And then the model is used for aiding RAIM method in order to exclude faulty satellite. Experimental results demonstrate that the prediction model is fit for predicting the RCB series, and with the clock-based RAIM method the faulty satellite can be correctly excluded and the positioning precision of GPS receiver can be improved for the case where there are only five useful satellites.展开更多
The Least Squares Residual(LSR)algorithm is commonly used in the Receiver Autonomous Integrity Monitoring(RAIM).However,LSR algorithm presents high Missed Detection Risk(MDR)caused by a large-slope faulty satellite an...The Least Squares Residual(LSR)algorithm is commonly used in the Receiver Autonomous Integrity Monitoring(RAIM).However,LSR algorithm presents high Missed Detection Risk(MDR)caused by a large-slope faulty satellite and high False Alert Risk(FAR)caused by a small-slope faulty satellite.In this paper,the LSR algorithm is improved to reduce the MDR for a large-slope faulty satellite and the FAR for a small-slope faulty satellite.Based on the analysis of the vertical critical slope,the optimal decentralized factor is defined and the optimal test statistic is conceived,which can minimize the FAR with the premise that the MDR does not exceed its allowable value of all three directions.To construct a new test statistic approximating to the optimal test statistic,the Optimal Decentralized Factor weighted LSR(ODF-LSR)algorithm is proposed.The new test statistic maintains the sum of pseudo-range residual squares,but the specific pseudo-range residual is weighted with a parameter related to the optimal decentralized factor.The new test statistic has the same decentralized parameter with the optimal test statistic when single faulty satellite exists,and the difference between the expectation of the new test statistic and the optimal test statistic is the minimum when no faulty satellite exists.The performance of the ODFLSR algorithm is demonstrated by simulation experiments.展开更多
基金Supported by the National High Technology Research and Development Program of China (‘863’Program) (2006AA12Z313)~~
文摘A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP) parameter and the uncertainty noise. The choice of the proper performance parameter provided the single-valued mapping with the missed detection probability estimates the probability of failure. The desirable characteristics of the residual sensitivity matrix are exploited to increase the efficiency for identifying erroneous observations. The algorithm can be used to support the performance specification and the efficient calculation of the integrity monitoring process. The simulation for non-precision approach (NPA) validates both the viability and the effectiveness of the proposed algorithm.
基金the National High Technology Research and Development Program(863)of China(No.2011AA120503)
文摘This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation.
文摘Navigation system integrity monitoring is crucial for mission(e.g.safety)critical applications.Receiver autonomous integrity monitoring(RAIM)based on consistency checking of redundant measurements is widely used for many applications.However,there are many challenges to the use of RAIM associated with multiple constellations and applications with very stringent requirements.This paper discusses two positioning techniques and corresponding integrity monitoring methods.The first is the use of single frequency pseudorange-based dual constellations.It employs a new cross constellation single difference scheme to benefit from the similarities while addressing the differences between the constellations.The second technique uses dual frequency carrier phase measurements from GLONASS and the global positioning system for precise point positioning.The results show significant improvements both in positioning accuracy and integrity monitoring as a result of the use of two constellations.The dual constellation positioning and integrity monitoring algorithms have the potential to be extended to multiple constellations.
基金supported by the National 863 project(2013AA122501-1)the National Natural Science Foundation of China(41020144004,41474015,41374019,41374003,41274040)
文摘Integrity is significant for safety-of-life applications. Receiver autonomous integrity monitoring(RAIM) has been developed to provide integrity service for civil aviation. At first,the conventional RAIM algorithm is only suitable for single fault detection, single GNSS constellation. However, multiple satellite failure should be considered when more than one satellite navigation system are adopted. To detect and exclude multi-fault, most current algorithms perform an iteration procedure considering all possible fault model which lead to heavy computation burden. An alternative RAIM is presented in this paper based on multiple satellite constellations(for example, GPS and Bei Dou(BDS) etc.) and robust estimation for multi-fault detection and exclusion, which can not only detect multi-failures,but also control the influences of near failure observation. Besides, the RAIM algorithm based on robust estimation is more efficient than the current RAIM algorithm for multiple constellation and multiple faults. Finally, the algorithm is tested by GPS/Bei Dou data.
基金This work has been partially supported by the Ministry of Science and Technology,Taiwan(Grant Numbers MOST 104-2221-E-019-026-MY3 and MOST 109-2221-E019-010).
文摘In this paper,the integrity monitoring algorithm based on a Kalman filter(KF)based rate detector is employed in the vector tracking loop(VTL)of the Global Positioning System(GPS)receiver.In the VTL approach,the extended Kalman filter(EKF)simultaneously tracks the received signals and estimates the receiver’s position,velocity,etc.In contrast to the scalar tracking loop(STL)that uses the independent parallel tracking loop approach,the VTL technique uses the correlation of each satellite signal and user dynamics and thus reduces the risk of loss lock of signals.Although the VTL scheme provides several important advantages,the failure of tracking in one channel may affect the entire system and lead to loss of lock on all satellites.The integrity monitoring algorithm can be adopted for robustness enhancement.In general,the standard integrity monitoring algorithm can timely detect the step type erroneous signals.However,in the presence of ramp type slowly growing erroneous signals,detection of such type of error takes much more time since the error cannot be detected until the cumulative exceeds the specified threshold.The integrity monitoring based on the rate detector possesses good potential for resolving such problem.The test statistic based on the pseudorange residual in association with the EKF is applied for determination of whether the test statistic exceeds the allowable threshold values.The fault detection and exclusion(FDE)mechanism can then be employed to exclude the hazardous erroneous signals for the abnormal satellites to assure normal operation of GPS receivers.Feasibility of the integrity monitoring algorithm based on the EKF based rate detector will be demonstrated.Performance assessment and evaluation will be presented.
文摘Nowadays, sensor networks are widely installed around the world. Typical sensors provide data for healthcare, energy management, environmental monitoring, etc. In the future sensors will become a part of critical infrastructures. In such a scenario the network operator has to monitor the integrity of the network devices, otherwise the trustworthiness of the whole system is questionable. The problem is that every integrity protocol needs a secure channel between the devices. Therefore, we will introduce a covert channel for hidden transportation of integrity monitoring messages. The covert channel enables us to hide integrity check messages embedded into regular traffic without giving potential attackers a hint on the used integrity protocol.
基金supported by the National Key Research and Development Program of China(No.2023YFB4302804)the National Natural Science Foundation of China(Nos.U2233217,62371029,62471023,62301016,and 62101015)。
文摘The snapshot Fault Detection(FD)algorithm of Advanced Receiver Autonomous Integrity Monitoring(ARAIM)necessitates the allocation of continuity and integrity risk requirements from the operational exposure time level to the single epoch level.Current studies primarily focus on finding a conservative Number of Effective Samples(NES)as a risk mapping factor.However,considering that the NES varies with the observation environment and the type of the fault mode,applying a fixed NES can constrain the performance of the algorithm.To address this issue,the continuity and integrity risks over the operational exposure time are analyzed and bounded based on all epochs within the exposure time.A more adaptable method for continuity and integrity budget allocation over the operational exposure time is presented,capable of monitoring the continuity and integrity risks over the recent operational exposure time in real time,and dynamically adjusting the allocation values based on the current observation environment.Simulation results demonstrate that,compared with the allocation method based on a fixed NES,ARAIM based on the proposed allocation method exhibits superior performance in terms of the availability.At an FD execution frequency equal to the required Time-To-Alert(TTA),the dual-constellation H-ARAIM provides 100%of the global coverage with 99.5%availability of the RNP 0.1 service,and the dual-constellation V-ARAIM provides 86.38%of the global coverage with 99.5%availability of the LPV-200 service.
基金The project is supported by the National key research and development program of China(Grant No.2020YFB0505804)the National Natural Science Foundation of China(Grant No.42274037,41874034)the Beijing Natural Science Foundation(Grant No.4202041).
文摘For the integrity monitoring of a multi-source PNT(Positioning,Navigation,and Timing)resilient fusion navigation system,a theoretical framework of multi-level autonomous integrity monitoring is proposed.According to the mode of multi-source fusion navigation,the framework adopts the top-down logic structure and establishes the navigation source fault detection model based on the multi-combination separation residual method to detect and isolate the fault source at the system level and subsystem level.For isolated non-redundant navigation sources,the system level recovery verification model is used.For the isolated multi-redundant navigation sources,the sensor fault detection model optimized with the dimension-expanding matrix is used to detect and isolate the fault sensors,and the isolated fault sensors are verified in real-time.Finally,according to the fault detection and verification results at each level,the observed information in the fusion navigation solution is dynamically adjusted.On this basis,the integrity risk dynamic monitoring tree is established to calculate the Protection Level(PL)and evaluate the integrity of the multi-source integrated navigation system.The autonomous integrity monitoring method proposed in this paper is tested using a multi-source navigation system integrated with Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),Long Baseline Location(LBL),and Ultra Short Baseline Location(USBL).The test results show that the proposed method can effectively isolate the fault source within 5 s,and can quickly detect multiple faulty sensors,ensuring that the positioning accuracy of the fusion navigation system is within 5 m,effectively improving the resilience and reliability of the multi-source fusion navigation system.
文摘Integrity monitoring for precise point positioning is critical for safety-related applications.With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles,the integrity monitoring method of high-precision positioning has become an essential requirement.While high precision Global Navigation Satellite Systems(GNSS)positioning is widely used in such applications,there are still many difculties in the integrity monitoring method for the multi-frequency multi-GNSS undiferenced and uncombined Precise Point Positioning(PPP).The main difculties are caused by using the measurements of multiple epochs in PPP.Based on the baseline Multiple Hypothesis Solution Separation(MHSS)Advanced Receiver Autonomous Integrity Monitoring(ARAIM)algorithm,this paper discusses the feasibility of the pseudorange-based baseline ARAIM method on the single-epoch PPP based on Real-Time Kinematic(RTK)networks(PPP-RTK)framework to overcome these difculties.In addition,a new scheme is proposed to transfer the conventional PPP process into the single-epoch PPP-RTK framework.The simulation results using the proposed model are analyzed in this study.The Protection Levels(PLs)estimated by PPP Wide-lane Ambiguity Resolution(PPP-WAR)model with regional corrections can reach the meter level and the PLs estimated by PPP Ambiguity Resolution(PPP-AR)and PPP-RTK models are usually the sub-meter level.Given a horizontal Alert Limit(AL)of 1.5 m,the global coverage of availability above 99.9%for PPP-WAR,PPP-AR,and PPP-RTK can reach 92.6%,99.4%,and 99.7%respectively.The results using real kinematic data also show that tight PLs can be achieved when the observation conditions are good.
文摘The wide area precise positioning system(WAPPS)is a high-precision positioning system based on a global navigation satellite system.Using a GEO satellite or a communication network,it provides users,in its service area,with real-time satellite orbit,clock,and other corrections.Users can achieve centimeter-level static positioning or decimeter-level kinematic positioning by precise point positioning.With the demands for applications of both high-precision and safety of life in real time,WAPPS is facing urgent needs to improve its service integrity.This study presents a real-time integrity monitoring approach for WAPPS.Using dual-frequency ionosphere-free corrections of GPS and BDS,along with monitor station data,related error models are established and the integrity monitoring is achieved,based on the analysis of satellite corrected residuals.In addition,satellite faults are simulated for performance verification.The results show that the algorithm can monitor both step and drift faults effectively and alert users in time.
基金Projects(51974059,52174142)supported by the National Natural Science Foundation of ChinaProject(2017YFC0602904)supported by the National Key Research and Development Program of ChinaProject(N180115010)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Microseismic monitoring technology has become an important technique to assess stability of rock mass in metal mines.Due to the special characteristics of underground metal mines in China,including the high tectonic stress,irregular shape and existence of ore body,and complex mining methods,the application of microseismic technology is more diverse in China compared to other countries,and is more challenging than in other underground structures such as tunnels,hydropower stations and coal mines.Apart from assessing rock mass stability and ground pressure hazards induced by mining process,blasting,water inrush and large scale goaf,microseismic technology is also used to monitor illegal mining,and track personnel location during rescue work.Moreover,microseismic data have been used to optimize mining parameters in some metal mines.The technology is increasingly used to investigate cracking mechanism in the design of rock mass supports.In this paper,the application,research development and related achievements of microseismic technology in underground metal mines in China are summarized.By considering underground mines from the perspective of informatization,automation and intelligentization,future studies should focus on intelligent microseismic data processing method,e.g.,signal identification of microseismic and precise location algorithm,and on the research and development of microseismic equipment.In addition,integrated monitoring and collaborative analysis for rock mass response caused by mining disturbance will have good prospects for future development.
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project (B054)
文摘For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
基金financially supported by National Key R&D Program of China (No. 2018YFC1505201)National Natural Science Foundation of China (No. 41901008)+2 种基金Open Fund Project of Key Laboratory of Mountain Hazards and Surface Processes of the Chinese Academy of Sciencesthe Fundamental Research Funds for the Central Universities (Grant NO. 2682018CX05)financially supported by China Scholarship Council
文摘Oil and gas pipelines are of great importance in China,and pipeline security problems pose a serious threat to society and the environment.Pipeline safety has therefore become an integral part of the entire national economy.Landslides are the most harmful type of pipeline accident,and have directed increasing public attention to safety issues.Although some useful results have been obtained in the investigation and prevention of pipeline-landslide hazards,there remains a need for effective monitoring and early warning methods,especially when the complexity of pipeline-landslides is considered.Because oil and gas pipeline-landslides typically occur in the superficial soil layers,monitoring instruments must be easy to install and must cause minimal disturbance to the surrounding soil and pipeline.To address the particular characteristics of pipelinelandslides,we developed a multi-parameter integrated monitoring system called disaster reduction stick equipment.In this paper,we detail this monitoring and early warning system for pipeline-landslide hazards based on an on-site monitoring network and early warning algorithms.The functionality of our system was verified by its successful application to the Chongqing Loujiazhuang pipeline-landslide in China.The results presented here provide guidelines for the monitoring,early warning,and prevention of pipeline geological hazards.
文摘The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System-(EOS-) Terra/Aqua satellite, as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water, heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
基金Supported by the National Hi-tech Research and Development Program of China(2007AA04Z415)the Hunan Province and Xiangtan City Natural Science Joint Foundation(09JJ8005)the Torch Program Project of Hunan Province(2008SH044)
文摘An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.
文摘In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simultaneous acquisition, a mechanism of multi-process andinter-process communication, the integrating problem of signal acquisition, the data dynamicmanagement and network-based configuration in the embedded condition monitoring system is solved. Itoffers the input function of monitoring information for network-based condition monitoring and afault diagnosis system.
文摘With the continuous development of computer technology and information communication technology, technology automation and related technologies are also gradually applied to building construction systems, providing more convenient travel safety systems for people. The emergence of intelligent building systems has opened a new era for the development of buildings. Intelligent building is the product of the combination of construction technology, network technology and communication technology in the new era. It not only provides new technology for the construction system, but also enables residents to have a more comfortable and safe living environment. Based on the overview of intelligent building system, this paper discusses the security problems encountered in the system operation process, and further analyzes the importance of network communication technology and firewall technology.
基金co-supported by the National Natural Science Foundation of China (Nos. 41804024, 41804026)the Open Fund of Shaanxi Key Laboratory of Integrated and Intelligent Navigation of China (No. SKLIIN-20190205)
文摘The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.
基金Project(20090580013) supported by the Aeronautic Science Foundation of ChinaProject(ZYGX2010J119) supported by the Fundamental Research Funds for the Central Universities,China
文摘Because the signals of global positioning system (GPS) satellites are susceptible to obstructions in urban environment with many high buildings around, the number of GPS useful satellites is usually less than six. In this case, the receiver autonomous integrity monitoring (RAIM) method earmot exclude faulty satellite. In order to improve the performance of RAIM method and obtain the reliable positioning results with five satellites, the series of receiver clock bias (RCB) is regarded as one useful satellite and used to aid RAIM method. From the point of nonlinear series, a grey-Markov model for predicting the RCB series based on grey theory and Markov chain is presented. And then the model is used for aiding RAIM method in order to exclude faulty satellite. Experimental results demonstrate that the prediction model is fit for predicting the RCB series, and with the clock-based RAIM method the faulty satellite can be correctly excluded and the positioning precision of GPS receiver can be improved for the case where there are only five useful satellites.
文摘The Least Squares Residual(LSR)algorithm is commonly used in the Receiver Autonomous Integrity Monitoring(RAIM).However,LSR algorithm presents high Missed Detection Risk(MDR)caused by a large-slope faulty satellite and high False Alert Risk(FAR)caused by a small-slope faulty satellite.In this paper,the LSR algorithm is improved to reduce the MDR for a large-slope faulty satellite and the FAR for a small-slope faulty satellite.Based on the analysis of the vertical critical slope,the optimal decentralized factor is defined and the optimal test statistic is conceived,which can minimize the FAR with the premise that the MDR does not exceed its allowable value of all three directions.To construct a new test statistic approximating to the optimal test statistic,the Optimal Decentralized Factor weighted LSR(ODF-LSR)algorithm is proposed.The new test statistic maintains the sum of pseudo-range residual squares,but the specific pseudo-range residual is weighted with a parameter related to the optimal decentralized factor.The new test statistic has the same decentralized parameter with the optimal test statistic when single faulty satellite exists,and the difference between the expectation of the new test statistic and the optimal test statistic is the minimum when no faulty satellite exists.The performance of the ODFLSR algorithm is demonstrated by simulation experiments.