With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of hig...With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation.展开更多
The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secu...The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current t...Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications.展开更多
The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic c...The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology.展开更多
Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resour...Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resources,a spectrum sharing policy-based consensus mechanism is proposed in this paper.Firstly,a spectrum sharing algorithm based on graph neural network is designed in the satelliteterrestrial spectrum sharing networks under the underlay model.It avoids high computational overhead of the traditional iterative optimization algorithm when the wireless channel condition and network topology are highly dynamic.Secondly,a consensus mechanism based on spectrum sharing strategy is designed,which converts the traditional meaningless hash problem into the graph neural network training.Miners compete for accounting rights by training a graph neutral network model that meets the spectrum sharing requirement.Finally,the consensus delay,communication and storage overhead of the proposed consensus mechanism are analyzed theoretically.The simulation results show that the proposed consensus mechanism can effectively improve spectrum efficiency with excellent scalability and generalization performance.展开更多
Satellite-terrestrial networks have garnered significant attention in recent years and are extensively applied in intelligent transportation and emergency rescue.This paper provides a comprehensive review of the lates...Satellite-terrestrial networks have garnered significant attention in recent years and are extensively applied in intelligent transportation and emergency rescue.This paper provides a comprehensive review of the latest research advancements in satellite-terrestrial integrated network(STIN)technologies from a network perspective,dividing STIN technologies into three categories according to network service flows—namely,topology maintenance,network routing,and orchestration transmission technologies.Furthermore,a novel network-layer perspective is considered to examine the applications of STINs across various domains,along with related frameworks,platforms,simulators,and datasets.Finally,this paper explores the mainstream research directions in STIN technologies,with an innovative focus on the network layer.It reviews the existing literature,outlines future trends,and discusses opportunities for collaboration with related fields.展开更多
To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network en...To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.展开更多
In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overl...In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works.展开更多
In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allo...In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization.展开更多
The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly d...The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly dynamic networks remains a significant challenge.In this paper,we propose an online learning-based resource scheduling scheme for satellite-terrestrial integrated networks(STINs)aimed at providing on-demand services with minimal resource utilization.Specifically,we focus on:①accurately characterizing the STIN channel,②predicting resource demand with uncertainty guarantees,and③implementing mixed timescale resource scheduling.For the STIN channel,we adopt the 3rd Generation Partnership Project channel and antenna models for non-terrestrial networks.We employ a one-dimensional convolution and attention-assisted long short-term memory architecture for average demand prediction,while introducing conformal prediction to mitigate uncertainties arising from burst traffic.Additionally,we develop a dual-timescale optimization framework that includes resource reservation on a larger timescale and resource adjustment on a smaller timescale.We also designed an online resource scheduling algorithm based on online convex optimization to guarantee long-term performance with limited knowledge of time-varying network information.Based on the Network Simulator 3 implementation of the STIN channel under our high-fidelity satellite Internet simulation platform,numerical results using a real-world dataset demonstrate the accuracy and efficiency of the prediction algorithms and online resource scheduling scheme.展开更多
The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serv...The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serves as an effective emergency solution.This study addresses the challenge of optimizing the energy efficiency of data transmission fromSPSs to low Earth orbit(LEO)satellites through unmanned aerial vehicles(UAVs),considering both effective capacity and fronthaul link capacity constraints.Due to the non-convex nature of the problem,the objective function is reformulated,and a delay-aware energy-efficient power allocation and UAV trajectory design(DEPATD)algorithm is proposed as a two-loop approach.Since the inner loop remains non-convex,the block coordinate descent(BCD)method is employed to decompose it into three subproblems:power allocation for SPSs,power allocation for UAVs,and UAV trajectory design.The first two subproblems are solved using the Lagrangian dual method,while the third is addressed with the successive convex approximation(SCA)technique.By iteratively solving these subproblems,an efficient algorithm is developed to resolve the inner loop issue.Simulation results demonstrate that the energy efficiency of the proposed DEPATD algorithm improves by 4.02% compared to the benchmark algorithm when the maximum transmission power of the SPSs increases from 0.1 to 0.45W.展开更多
1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring na...1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring nations and regions,including the United States,Europe,China,and Russia.Specifically,Space X’s Starlink project has deployed over 6750 satellites,2while One Web has completed its initial phase of satellite constellation deployment with more than 600 satellites.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disaster...In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disasters frequently damage terrestrial communication infrastructures,making the rapid deployment of emergency communication networks in affected areas critical in increasing rescue efficiency[2].展开更多
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ...With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices.展开更多
To realize the ultimate vision of Internet of Things(IoT),only depending on terrestrial network is far from enough.As a supplement and extension of terrestrial network,satellite network can offer powerful support to r...To realize the ultimate vision of Internet of Things(IoT),only depending on terrestrial network is far from enough.As a supplement and extension of terrestrial network,satellite network can offer powerful support to realize the depth and breadth of the coverage.However,existing satellite networks are usually designed for particular purposes.Moreover,traditional satellite networks and terrestrial networks are developed and operated separately,consequently they cannot meet the need of network flexibility required by IoT.In this paper,a space-terrestrial architecture is conceived for constructing a spaceterrestrial based IoT(ST-IoT) system.Additionally,a reliable identification procedure,an integrated access and communication procedure,as well as a clustering cooperative transmission strategy are also presented.展开更多
According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are ...According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.展开更多
An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power fallof...An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
文摘With the large-scale deployment of satellite constellations such as Starlink and the rapid advancement of technologies including artificial intelligence (AI) and non-terrestrial networks (NTNs), the integration of high, medium, and low Earth orbit satellite networks with terrestrial networks has become a critical direction for future communication technologies. The objective is to develop a space-terrestrial integrated 6G network that ensures ubiquitous connectivity and seamless services, facilitating intelligent interconnection and collaborative symbiosis among humans, machines, and objects. This integration has become a central focus of global technological innovation.
基金supported by National Key Research and Development Program of Chain(No.2021YFE0205300)National Natural Science Foundation of China(No.62171313).
文摘The future 6G networks will integrates space and terrestrial networks to realize a fully connected world with extensive collaboration.However,how to build trust between multiple parties is a difficult problem for secure cooperation without a reliable third-party.Blockchain is a promising technology to solve this problem by converting the trust between multi-parties to the trust to the common shared data.Several works have proposed to apply the incentive mechanism in blockchain to encourage effective cooperation,but how to evaluate the cooperation performance and avoid breach of contract is not discussed.In this paper,a secure relay scheme is proposed based on the consortium blockchain system composed by different operators.In particular,smart contract checks the integrity of the message based on RSA accumulator,and executes transactions automatically when the message is delivered successfully.Detailed procedures are introduced for both uplink and downlink relay.Implementation based on Hyperledger Fabric proves the effectiveness of the proposed scheme and shows that the complexity of the scheme is low enough for practical deployment.
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金the North Dakota Industrial Commission (NDIC) for their financial supportprovided by the University of North Dakota Computational Research Center。
文摘Accurate estimation of mineralogy from geophysical well logs is crucial for characterizing geological formations,particularly in hydrocarbon exploration,CO_(2) sequestration,and geothermal energy development.Current techniques,such as multimineral petrophysical analysis,offer details into mineralogical distribution.However,it is inherently time-intensive and demands substantial geological expertise for accurate model evaluation.Furthermore,traditional machine learning techniques often struggle to predict mineralogy accurately and sometimes produce estimations that violate fundamental physical principles.To address this,we present a new approach using Physics-Integrated Neural Networks(PINNs),that combines data-driven learning with domain-specific physical constraints,embedding petrophysical relationships directly into the neural network architecture.This approach enforces that predictions adhere to physical laws.The methodology is applied to the Broom Creek Deep Saline aquifer,a CO_(2) sequestration site in the Williston Basin,to predict the volumes of key mineral constituents—quartz,dolomite,feldspar,anhydrite,illite—along with porosity.Compared to traditional artificial neural networks (ANN),the PINN approach demonstrates higher accuracy and better generalizability,significantly enhancing predictive performance on unseen well datasets.The average mean error across the three blind wells is 0.123 for ANN and 0.042 for PINN,highlighting the superior accuracy of the PINN approach.This method reduces uncertainties in reservoir characterization by improving the reliability of mineralogy and porosity predictions,providing a more robust tool for decision-making in various subsurface geoscience applications.
基金supported by China’s National Key R&D Program(Project Number:2022YFB2902100)。
文摘The sixth-generation(6G)networks will consist of multiple bands such as low-frequency,midfrequency,millimeter wave,terahertz and other bands to meet various business requirements and networking scenarios.The dynamic complementarity of multiple bands are crucial for enhancing the spectrum efficiency,reducing network energy consumption,and ensuring a consistent user experience.This paper investigates the present researches and challenges associated with deployment of multi-band integrated networks in existing infrastructures.Then,an evolutionary path for integrated networking is proposed with the consideration of maturity of emerging technologies and practical network deployment.The proposed design principles for 6G multi-band integrated networking aim to achieve on-demand networking objectives,while the architecture supports full spectrum access and collaboration between high and low frequencies.In addition,the potential key air interface technologies and intelligent technologies for integrated networking are comprehensively discussed.It will be a crucial basis for the subsequent standards promotion of 6G multi-band integrated networking technology.
基金supported in part by the National Natural Science Foundation of China under Grant 62171020.
文摘Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resources,a spectrum sharing policy-based consensus mechanism is proposed in this paper.Firstly,a spectrum sharing algorithm based on graph neural network is designed in the satelliteterrestrial spectrum sharing networks under the underlay model.It avoids high computational overhead of the traditional iterative optimization algorithm when the wireless channel condition and network topology are highly dynamic.Secondly,a consensus mechanism based on spectrum sharing strategy is designed,which converts the traditional meaningless hash problem into the graph neural network training.Miners compete for accounting rights by training a graph neutral network model that meets the spectrum sharing requirement.Finally,the consensus delay,communication and storage overhead of the proposed consensus mechanism are analyzed theoretically.The simulation results show that the proposed consensus mechanism can effectively improve spectrum efficiency with excellent scalability and generalization performance.
基金support from the National Key Research and Development Program of China(2024YFB3108400)the Hubei Province Key Research and Development Program(2024BAB051).
文摘Satellite-terrestrial networks have garnered significant attention in recent years and are extensively applied in intelligent transportation and emergency rescue.This paper provides a comprehensive review of the latest research advancements in satellite-terrestrial integrated network(STIN)technologies from a network perspective,dividing STIN technologies into three categories according to network service flows—namely,topology maintenance,network routing,and orchestration transmission technologies.Furthermore,a novel network-layer perspective is considered to examine the applications of STINs across various domains,along with related frameworks,platforms,simulators,and datasets.Finally,this paper explores the mainstream research directions in STIN technologies,with an innovative focus on the network layer.It reviews the existing literature,outlines future trends,and discusses opportunities for collaboration with related fields.
基金National Key Research and Development Program of China(2022YFE0139300)Hubei Province Key Research and Development Program(2024BAB051)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022B1515120067)Wuhan Key Research and Development Program(2024050702030136).
文摘To support ubiquitous communication and enhance other 6G applications,the Space-Air-Ground Integrated Network(SAGIN)has become a research hotspot.Traditionally,satellite-ground fusion technologies integrate network entities from space,aerial,and terrestrial domains.However,they face challenges such as spectrum scarcity and inefficient satellite handover.This paper explores the Channel-Aware Handover Management(CAHM)strategy in SAGIN for data allocation.Specifically,CAHM utilizes the data receiving capability of Low Earth Orbit(LEO)satellites,considering satellite-ground distance,free-space path loss,and channel gain.Furthermore,CAHM assesses LEO satellite data forwarding capability using signal-to-noise ratio,link duration and buffer queue length.Then,CAHM applies historical data on LEO satellite transmission successes and failures to effectively reduce overall interruption ratio.Simulation results show that CAHM outperforms baseline algorithms in terms of delivery ratio,latency,and interruption ratio.
基金supported by the National Key Research and Development Program of China under Grant No.2022YFB2902501the Fundamental Research Funds for the Central Universities under Grant No.2023ZCJH09the Haidian District Golden Bridge Seed Fund of Beijing Municipality under Grant No.S2024161.
文摘In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works.
基金funded by State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster under Grant MS01240103the National Natural Science Foundation of China under Grant 62071146National 2011 Collaborative Innovation Center of Wireless Communication Technologies under Grant 2242022k60006.
文摘In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization.
基金supported in part by the Major Program of the National Natural Science Foundation of China(62495021 and 62495020).
文摘The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly dynamic networks remains a significant challenge.In this paper,we propose an online learning-based resource scheduling scheme for satellite-terrestrial integrated networks(STINs)aimed at providing on-demand services with minimal resource utilization.Specifically,we focus on:①accurately characterizing the STIN channel,②predicting resource demand with uncertainty guarantees,and③implementing mixed timescale resource scheduling.For the STIN channel,we adopt the 3rd Generation Partnership Project channel and antenna models for non-terrestrial networks.We employ a one-dimensional convolution and attention-assisted long short-term memory architecture for average demand prediction,while introducing conformal prediction to mitigate uncertainties arising from burst traffic.Additionally,we develop a dual-timescale optimization framework that includes resource reservation on a larger timescale and resource adjustment on a smaller timescale.We also designed an online resource scheduling algorithm based on online convex optimization to guarantee long-term performance with limited knowledge of time-varying network information.Based on the Network Simulator 3 implementation of the STIN channel under our high-fidelity satellite Internet simulation platform,numerical results using a real-world dataset demonstrate the accuracy and efficiency of the prediction algorithms and online resource scheduling scheme.
基金Supported by the Self-funded Research Project of Beijing FibrLink Communications Co.Ltd.“Research on Key Technologies forUnifiedManagement of Air-to-Earth Integrated CommunicationNetworks(546826230034).”。
文摘The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serves as an effective emergency solution.This study addresses the challenge of optimizing the energy efficiency of data transmission fromSPSs to low Earth orbit(LEO)satellites through unmanned aerial vehicles(UAVs),considering both effective capacity and fronthaul link capacity constraints.Due to the non-convex nature of the problem,the objective function is reformulated,and a delay-aware energy-efficient power allocation and UAV trajectory design(DEPATD)algorithm is proposed as a two-loop approach.Since the inner loop remains non-convex,the block coordinate descent(BCD)method is employed to decompose it into three subproblems:power allocation for SPSs,power allocation for UAVs,and UAV trajectory design.The first two subproblems are solved using the Lagrangian dual method,while the third is addressed with the successive convex approximation(SCA)technique.By iteratively solving these subproblems,an efficient algorithm is developed to resolve the inner loop issue.Simulation results demonstrate that the energy efficiency of the proposed DEPATD algorithm improves by 4.02% compared to the benchmark algorithm when the maximum transmission power of the SPSs increases from 0.1 to 0.45W.
基金co-supported by the National Natural Science Foundation of China(Nos.62225103,U2441227,U24A20211)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-22-002C2)。
文摘1.Introduction As a key development of the next-generation spatial information infrastructure,1the Satellite-Terrestrial Integrated Network(STIN)has become a strategic priority actively pursued by major spacefaring nations and regions,including the United States,Europe,China,and Russia.Specifically,Space X’s Starlink project has deployed over 6750 satellites,2while One Web has completed its initial phase of satellite constellation deployment with more than 600 satellites.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金supported in part by the National Natural Science Foundation of China(U2441226).
文摘In recent years,intensified environmental pollution and climate change have increasingly exposed the world to natural disasters such as earthquakes and floods,resulting in substantial economic losses[1].These disasters frequently damage terrestrial communication infrastructures,making the rapid deployment of emergency communication networks in affected areas critical in increasing rescue efficiency[2].
基金supported by the Gansu Province Key Research and Development Plan(No.23YFGA0062)Gansu Provin-cial Innovation Fund(No.2022A-215).
文摘With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices.
文摘To realize the ultimate vision of Internet of Things(IoT),only depending on terrestrial network is far from enough.As a supplement and extension of terrestrial network,satellite network can offer powerful support to realize the depth and breadth of the coverage.However,existing satellite networks are usually designed for particular purposes.Moreover,traditional satellite networks and terrestrial networks are developed and operated separately,consequently they cannot meet the need of network flexibility required by IoT.In this paper,a space-terrestrial architecture is conceived for constructing a spaceterrestrial based IoT(ST-IoT) system.Additionally,a reliable identification procedure,an integrated access and communication procedure,as well as a clustering cooperative transmission strategy are also presented.
文摘According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.
基金The National Natural Science Foundation of China(No.60872004)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2010A08)the Fundamental Research Funds for the Central Universities(No.2009B21814)
文摘An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.