Electric power is widely used as the main energy source of ship integrated power system(SIPS), which contains power network and electric power network. SIPS network reconfiguration is a non-linear large-scale problem....Electric power is widely used as the main energy source of ship integrated power system(SIPS), which contains power network and electric power network. SIPS network reconfiguration is a non-linear large-scale problem. The reconfiguration solution influences the safety and stable operation of the power system. According to the operational characteristics of SIPS, a simplified model of power network and a mathematical model for network reconfiguration are established. Based on these models, a multi-agent and ant colony optimization(MAACO) is proposed to solve the problem of network reconfiguration. The simulations are carried out to demonstrate that the optimization method can reconstruct the integrated power system network accurately and efficiently.展开更多
This paper presents a partition-based Design-for- Test (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. ...This paper presents a partition-based Design-for- Test (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. By enabling the scan domains alternatively, only a fraction of the entire chip will be active at the same time, leading to low power consumption during test. Therefore, it will significantly reduce the possibility of Electronic Migration and Overheating. In order to prevent the drop of fault coverage, wrappers on the boundaries between scan domains are employed. This paper also presents a detailed design flow based on Electronics Design Automation (EDA) tools from Synopsy~ to implement the proposed test structure. The proposed DFT method is experimented on a state-of-theart System-ou-chips (SOC). The simulation results show a significant reduction in both average and peak power dissipation without sacrificing the fault coverage and test time. This SOC has been taped out in TSMC and finished the final test m ADVANTEST.展开更多
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT...The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.展开更多
To utilize electricity in a clean and integrated manner,a zero-carbon hydro-photovoltaic(PV)-pumped hydro storage(PHS)integrated power system is studied,considering the uncertainties of PV and load demand.It is a chal...To utilize electricity in a clean and integrated manner,a zero-carbon hydro-photovoltaic(PV)-pumped hydro storage(PHS)integrated power system is studied,considering the uncertainties of PV and load demand.It is a challenge for operators to develop a dynamic dispatch mechanism for such a system,and traditional dispatch methods are difficult to adapt to random changes in the actual environment.Therefore,this study proposes a real-time dynamic dispatch strategy considering economic operation and complementary regulatory ability.First,the dynamic dispatch of a hydro-PV-PHS integrated power system is presented as a multi-objective optimization problem and the weight factor between different goals is effectively calculated using information entropy.Afterwards,the dispatch model is converted into the Markov decision process,where the dynamic dispatch decision is formulated as a reinforcement learning framework.Then,a deep deterministic policy gradient(DDPG)is deployed towards the online decision for dispatch in continuous action spaces.Finally,a case study is applied to evaluate the performance of the proposed method based on a real hydroPV-PHS integrated power system in China.Simulations show that the system agent reduces the power volatility of supply by 26.7%after hydropower regulating and further relieves power fluctuation at the point of common coupling(PCC)to the upperlevel grid by 3.28%after PHS participation.The comparison results verify the effectiveness of the proposed method.展开更多
Aiming at the comparatively laggard level of power plant electrical system automation, this paper analyzes the feasibility,necessity and some key points of the application of integrated automation technology to power ...Aiming at the comparatively laggard level of power plant electrical system automation, this paper analyzes the feasibility,necessity and some key points of the application of integrated automation technology to power plant electrical system. New idea using fieldbus control system technology is presented. This paper also gives the outline and detailed schemes.展开更多
Artificial intelligence(AI), owing to its substantial computing demands, necessitates computing hardware that offers both high speed and high power efficiency. A silicon photonic integrated circuit shows promise as a ...Artificial intelligence(AI), owing to its substantial computing demands, necessitates computing hardware that offers both high speed and high power efficiency. A silicon photonic integrated circuit shows promise as a hardware solution due to its attributes, including high power efficiency, low latency, large bandwidth, and complementary metal-oxide-semiconductor(CMOS) compatibility. Here, we propose a silicon photonic convolution accelerator(SiPh-CA) and experimentally realize a prototype with sub-integrated coherent transmit-receive optical sub-assemblies(sub-IC-TROSAs). The prototype, compared to a previous IC-TROSA-based convolution accelerator, achieves almost the same performances of 1.024 TOPS/channel and 96.22% inference accuracy when it processes neural networks for image recognition, using half the numbers of the modulators and the drivers with which over 1/3 chip footprint and 37.01% power consumption are reduced. By incorporating a broadcasting scheme based on splitters and combiners, the approach can efficiently process multiple convolutions in parallel,achieving several tera operations per second. This scalability feature allows the SiPh-CA to process complex AI and high-performance computing tasks.展开更多
The dynamic characteristic evaluation is an important prerequisite for safe and reliable operation of the mediumvoltage DC integrated power system(MIPS),and the dynamic state estimation is an essential technical appro...The dynamic characteristic evaluation is an important prerequisite for safe and reliable operation of the mediumvoltage DC integrated power system(MIPS),and the dynamic state estimation is an essential technical approach to the evaluation.Unlike the electromechanical transient process in a traditional power system,periodic change in pulse load of the MIPS is an electromagnetic transient process.As the system state suddenly changes in the range of a smaller time constant,it is difficult to estimate the dynamic state due to periodic disturbance.This paper presents a dynamic mathematical model of the MIPS according to the network structure and control strategy,thereby overcoming the restrictions of algebraic variables on the estimation and developing a dynamic state estimation method based on the extended Kalman filter.Using the method of adding fictitious process noise,it is possible to solve the problem that the linearized algorithm of the MIPS model is less reliable when an abrupt change occurs in the pulse load.Therefore,the accuracy of the dynamic state estimation and the stability of the filter can be improved under the periodic disturbance of pulse load.The simulation and experimental results confirm that the proposed model and method are feasible and effective.展开更多
The integrated power system(IPS) is a foundation of all-electrical ships and vessels. The stability of IPS becomes a prerequisite of complicated cruise tasks. Thus, advanced stability analysis and regulation methods f...The integrated power system(IPS) is a foundation of all-electrical ships and vessels. The stability of IPS becomes a prerequisite of complicated cruise tasks. Thus, advanced stability analysis and regulation methods for IPS are of great importance. In this paper, a novel method is proposed for analyzing and enhancing transient stability of IPS, which is regarded as a cyber-physical system comprising of subsystems and connections. Criterions for determining input-output stability of such a system are firstly derived. Then, the stability analysis of IPS can be performed in the following two steps: 1) evaluating local input-output stability features of each subsystem independently through simulations. 2) Checking stability criterions with system topology and subsystem stability features. Moreover, synthetic approaches are proposed for stabilization and stability enhancement of IPS. To avoid system in-stability after major failures or topology changes, the optimal emergency control is performed to reconfigure subsystems. The other optimal regulation is used to strengthen system stability by adjusting subsystems' control parameters during normal operation conditions. Case studies on a typical IPS validate the proposed stability analysis and enhancement approach.展开更多
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tra...The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.展开更多
Power integrated isolation structures play a crucial role in the field of power electronics,especially in silicon carbide(SiC)devices,where challenges such as high leakage current and insufficient voltage endurance ar...Power integrated isolation structures play a crucial role in the field of power electronics,especially in silicon carbide(SiC)devices,where challenges such as high leakage current and insufficient voltage endurance are prevalent.This paper introduces a novel isolation technology based on vanadium ion implantation,achieving high-performance SiC monolithic integration through deep energy level trapping engineering and three-dimensional composite isolation design.The core technologies include:semi-insulating layer+dielectric trench co-isolation,high-precision process control,high-temperature compatibility optimization,ultra-high breakdown field strength,support for 10kV class IGBT/MOSFET integration,and a 30-50%increase in chip area utilization,combining high performance with low-cost advantages.展开更多
In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allo...In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization.展开更多
基金supported by the National Natural Science Foundation of China (4177402141974005)。
文摘Electric power is widely used as the main energy source of ship integrated power system(SIPS), which contains power network and electric power network. SIPS network reconfiguration is a non-linear large-scale problem. The reconfiguration solution influences the safety and stable operation of the power system. According to the operational characteristics of SIPS, a simplified model of power network and a mathematical model for network reconfiguration are established. Based on these models, a multi-agent and ant colony optimization(MAACO) is proposed to solve the problem of network reconfiguration. The simulations are carried out to demonstrate that the optimization method can reconstruct the integrated power system network accurately and efficiently.
文摘This paper presents a partition-based Design-for- Test (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. By enabling the scan domains alternatively, only a fraction of the entire chip will be active at the same time, leading to low power consumption during test. Therefore, it will significantly reduce the possibility of Electronic Migration and Overheating. In order to prevent the drop of fault coverage, wrappers on the boundaries between scan domains are employed. This paper also presents a detailed design flow based on Electronics Design Automation (EDA) tools from Synopsy~ to implement the proposed test structure. The proposed DFT method is experimented on a state-of-theart System-ou-chips (SOC). The simulation results show a significant reduction in both average and peak power dissipation without sacrificing the fault coverage and test time. This SOC has been taped out in TSMC and finished the final test m ADVANTEST.
文摘The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.
基金supported by the National Key R&D Program of China under Grant 2018YFB0905200.
文摘To utilize electricity in a clean and integrated manner,a zero-carbon hydro-photovoltaic(PV)-pumped hydro storage(PHS)integrated power system is studied,considering the uncertainties of PV and load demand.It is a challenge for operators to develop a dynamic dispatch mechanism for such a system,and traditional dispatch methods are difficult to adapt to random changes in the actual environment.Therefore,this study proposes a real-time dynamic dispatch strategy considering economic operation and complementary regulatory ability.First,the dynamic dispatch of a hydro-PV-PHS integrated power system is presented as a multi-objective optimization problem and the weight factor between different goals is effectively calculated using information entropy.Afterwards,the dispatch model is converted into the Markov decision process,where the dynamic dispatch decision is formulated as a reinforcement learning framework.Then,a deep deterministic policy gradient(DDPG)is deployed towards the online decision for dispatch in continuous action spaces.Finally,a case study is applied to evaluate the performance of the proposed method based on a real hydroPV-PHS integrated power system in China.Simulations show that the system agent reduces the power volatility of supply by 26.7%after hydropower regulating and further relieves power fluctuation at the point of common coupling(PCC)to the upperlevel grid by 3.28%after PHS participation.The comparison results verify the effectiveness of the proposed method.
文摘Aiming at the comparatively laggard level of power plant electrical system automation, this paper analyzes the feasibility,necessity and some key points of the application of integrated automation technology to power plant electrical system. New idea using fieldbus control system technology is presented. This paper also gives the outline and detailed schemes.
基金National Natural Science Foundation of China(U21A20454, 62235017, U23A20356)。
文摘Artificial intelligence(AI), owing to its substantial computing demands, necessitates computing hardware that offers both high speed and high power efficiency. A silicon photonic integrated circuit shows promise as a hardware solution due to its attributes, including high power efficiency, low latency, large bandwidth, and complementary metal-oxide-semiconductor(CMOS) compatibility. Here, we propose a silicon photonic convolution accelerator(SiPh-CA) and experimentally realize a prototype with sub-integrated coherent transmit-receive optical sub-assemblies(sub-IC-TROSAs). The prototype, compared to a previous IC-TROSA-based convolution accelerator, achieves almost the same performances of 1.024 TOPS/channel and 96.22% inference accuracy when it processes neural networks for image recognition, using half the numbers of the modulators and the drivers with which over 1/3 chip footprint and 37.01% power consumption are reduced. By incorporating a broadcasting scheme based on splitters and combiners, the approach can efficiently process multiple convolutions in parallel,achieving several tera operations per second. This scalability feature allows the SiPh-CA to process complex AI and high-performance computing tasks.
基金supported by the National Key Basic Research Program of China(973 Program)(No.613294)the Natural Science Foundation of China(No.51877211)
文摘The dynamic characteristic evaluation is an important prerequisite for safe and reliable operation of the mediumvoltage DC integrated power system(MIPS),and the dynamic state estimation is an essential technical approach to the evaluation.Unlike the electromechanical transient process in a traditional power system,periodic change in pulse load of the MIPS is an electromagnetic transient process.As the system state suddenly changes in the range of a smaller time constant,it is difficult to estimate the dynamic state due to periodic disturbance.This paper presents a dynamic mathematical model of the MIPS according to the network structure and control strategy,thereby overcoming the restrictions of algebraic variables on the estimation and developing a dynamic state estimation method based on the extended Kalman filter.Using the method of adding fictitious process noise,it is possible to solve the problem that the linearized algorithm of the MIPS model is less reliable when an abrupt change occurs in the pulse load.Therefore,the accuracy of the dynamic state estimation and the stability of the filter can be improved under the periodic disturbance of pulse load.The simulation and experimental results confirm that the proposed model and method are feasible and effective.
基金supported by the National Natural Science Foundation of China(Grant No.51321005)the State Scholarship Fund of China,the National 973 Project(Grant No.613294)State Key Laboratory of Electrical Insulation and Power Equipment(Grant No.EIPE17313)
文摘The integrated power system(IPS) is a foundation of all-electrical ships and vessels. The stability of IPS becomes a prerequisite of complicated cruise tasks. Thus, advanced stability analysis and regulation methods for IPS are of great importance. In this paper, a novel method is proposed for analyzing and enhancing transient stability of IPS, which is regarded as a cyber-physical system comprising of subsystems and connections. Criterions for determining input-output stability of such a system are firstly derived. Then, the stability analysis of IPS can be performed in the following two steps: 1) evaluating local input-output stability features of each subsystem independently through simulations. 2) Checking stability criterions with system topology and subsystem stability features. Moreover, synthetic approaches are proposed for stabilization and stability enhancement of IPS. To avoid system in-stability after major failures or topology changes, the optimal emergency control is performed to reconfigure subsystems. The other optimal regulation is used to strengthen system stability by adjusting subsystems' control parameters during normal operation conditions. Case studies on a typical IPS validate the proposed stability analysis and enhancement approach.
基金supported by National Natural Science Foundation of China (Grant No. 60704025)
文摘The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.
文摘Power integrated isolation structures play a crucial role in the field of power electronics,especially in silicon carbide(SiC)devices,where challenges such as high leakage current and insufficient voltage endurance are prevalent.This paper introduces a novel isolation technology based on vanadium ion implantation,achieving high-performance SiC monolithic integration through deep energy level trapping engineering and three-dimensional composite isolation design.The core technologies include:semi-insulating layer+dielectric trench co-isolation,high-precision process control,high-temperature compatibility optimization,ultra-high breakdown field strength,support for 10kV class IGBT/MOSFET integration,and a 30-50%increase in chip area utilization,combining high performance with low-cost advantages.
基金funded by State Key Laboratory of Micro-Spacecraft Rapid Design and Intelligent Cluster under Grant MS01240103the National Natural Science Foundation of China under Grant 62071146National 2011 Collaborative Innovation Center of Wireless Communication Technologies under Grant 2242022k60006.
文摘In this paper,we propose a joint power and frequency allocation algorithm considering interference protection in the integrated satellite and terrestrial network(ISTN).We efficiently utilize spectrum resources by allowing user equipment(UE)of terrestrial networks to share frequencies with satellite networks.In order to protect the satellite terminal(ST),the base station(BS)needs to control the transmit power and frequency resources of the UE.The optimization problem involves maximizing the achievable throughput while satisfying the interference protection constraints of the ST and the quality of service(QoS)of the UE.However,this problem is highly nonconvex,and we decompose it into power allocation and frequency resource scheduling subproblems.In the power allocation subproblem,we propose a power allocation algorithm based on interference probability(PAIP)to address channel uncertainty.We obtain the suboptimal power allocation solution through iterative optimization.In the frequency resource scheduling subproblem,we develop a heuristic algorithm to handle the non-convexity of the problem.The simulation results show that the combination of power allocation and frequency resource scheduling algorithms can improve spectrum utilization.