This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded ...This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded materials with varying properties.The model employs a multilayer heterostructure homogeneous approach within the FIT to linearize and approximate various parameters,such as the thermal conductivity,specific heat,density,stiffness,thermal expansion coefficient,and Poisson’s ratio.The provided FIT and g-PINN techniques are highly proficient in solving the PDEs of energy equations and equations of motion in a spherical domain,particularly when dealing with space-time dependent boundary conditions.The FIT method simplifies the governing partial differential equations into ordinary differential equations for efficient solutions,whereas the g-PINN bypasses linearization,achieving high accuracy with fewer training data(error<3.8%).The approach is applied to a spherical pressure vessel,solving energy and motion equations under complex boundary conditions.Furthermore,extensive parametric studies are conducted herein to demonstrate the impact of different property profiles and radial locations on the transient evolution and dynamic propagation of thermomechanical stresses.However,the accuracy of the presented approach is evaluated by comparing the g-PINN results,which have an error of less than 3.8%.Moreover,this model offers significant potential for optimizing materials in hightemperature reactors and chemical plants,improving safety,extending lifespan,and reducing thermal fatigue under extreme processing conditions.展开更多
In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han- kel-Clifford integral transformation (HCIIT) on the positive half line and studied some of its basic properties. Also we obt...In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han- kel-Clifford integral transformation (HCIIT) on the positive half line and studied some of its basic properties. Also we obtain Parseval's relation and an inversion formula. Examples of fractional powers of Hankel-Clifford integral transformation (FrHClIT) and FrWT are given. Then, we introduce the concept of fractional wavelet packet transformations FrBWPT and FrWPIT, and investigate their properties.展开更多
In this paper, the compatibility between the integral type gauge transformation and the additional symmetry of the constrained KP hierarchy is given. And the string-equation constraint in matrix models is also derived.
In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transform...In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses, the dual equation which is constructed from boundary conditions lastly was solved. This method of investigating dynamic crack has become a more systematic one that is used widely. Some problems are encountered when the dynamic crack is studied. After the large investigation on the problems, it is discovered that during the process of mathematic derivation, the method is short of precision, and the derived results in this method are accidental and have no credibility.A model for example is taken to explain the problems existing in initial deriving process of the integral_transformation method of dynamic crack.展开更多
This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to c...This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the...This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow.展开更多
As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.Thi...As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.This work establishes a dynamic behavior model of steel catenary risers(SCRs)with varying curvatures subjected to internal flow and external currents and considers the effects of pipe-soil interactions on the curvature profile.The governing equation is solved via the generalized integral transform technique(GITT),which yields a semi-analytical solution of a high-order nonlinear partial differential equation.Parametric studies are then performed to analyze the effects of varying curvature on the vibration frequency and amplitude of SCRs.The vibration frequency and amplitude increase with the touchdown angle and hang-off angle,although the effect of the hang-off angle is negligible.Additionally,as the curvature increases along the centerline axis,the position of the maximum amplitude of the SCR moves upward.展开更多
By using a certain hybrid-type convolution operator,we first introduce a new subclass of normalized analytic functions in the open unit disk.For members of this analytic function class,we then derive several propertie...By using a certain hybrid-type convolution operator,we first introduce a new subclass of normalized analytic functions in the open unit disk.For members of this analytic function class,we then derive several properties and characteristics including(for example)the modified Hadamard products,Holder's inequalities and convolution properties as well as some closure properties under a general family of integral transforms.展开更多
Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining...Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.展开更多
The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary co...The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.展开更多
We propose a new two-fold integration transformation in p-q phase space∫∫^∞-∞dpdq/π e^2i(p-x)(q-y)f(p,q)≡G(x,y),which possesses some well-behaved transformation properties. We apply this transformation t...We propose a new two-fold integration transformation in p-q phase space∫∫^∞-∞dpdq/π e^2i(p-x)(q-y)f(p,q)≡G(x,y),which possesses some well-behaved transformation properties. We apply this transformation to the Weyl ordering of operators, especially those Q-P ordered and P-Q ordered operators.展开更多
Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transf...Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transform) in phase space quantum mechanics,∫∫∞-∞dp'dq'/π △(q',p')e-2i( p-p')( q-q')=δ( p-P)δ( q-Q),∫∫∞-∞dqdpδ(p-P)δ(q-Q)e2i(p-p')(q-q')=△(q',p'),whereQ,P are the coordinate and momentum operators, respectively. We apply it to study mutual converting formulae among Q-P ordering, P-Q ordering and Weyl ordering of operators. In this way, the contents of phase space quantum mechanics can be enriched. The formula of the Weyl ordering of operators expansion and the technique of integration within the Weyl ordered product of operators are used in this discussion.展开更多
We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central osc...We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.展开更多
Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for examp...Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable.展开更多
As a natural and important extension of Fan's paper (Fan Hong-Yi 2010 Chin. Phys. B 19 040305) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation this p...As a natural and important extension of Fan's paper (Fan Hong-Yi 2010 Chin. Phys. B 19 040305) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation this paper finds a new two-fold complex integration transformation about the Wigner operator A (#, ~) (in its entangled form) in phase space quantum mechanics, and its inverse transformation. In this way, some operator ordering problems regarding to (a1-a2) and (a1+a2) can be solved and the contents of phase space quantum mechanics can be enriched, where ai,ai are bosonic creation and annihilation operators, respectively.展开更多
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi...This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.展开更多
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be d...The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.展开更多
The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generaliz...The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations (SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.展开更多
This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method. Based on the numerical results, the effect of non-Newtonian coeff...This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method. Based on the numerical results, the effect of non-Newtonian coefficient Hc and other parameters on the flow are analysed. It is shown that the annular flow has a shorter characteristic time than the general pipe flow while the correspondent velocity, average velocity have a ... nailer value for a given Hc. Else, when radii ratio keeps unchanged, the shear stress of inner wall of annular flow will change with the inner radius -compared with the general pipe flow and is always smaller than that of the outer wall.展开更多
文摘This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded materials with varying properties.The model employs a multilayer heterostructure homogeneous approach within the FIT to linearize and approximate various parameters,such as the thermal conductivity,specific heat,density,stiffness,thermal expansion coefficient,and Poisson’s ratio.The provided FIT and g-PINN techniques are highly proficient in solving the PDEs of energy equations and equations of motion in a spherical domain,particularly when dealing with space-time dependent boundary conditions.The FIT method simplifies the governing partial differential equations into ordinary differential equations for efficient solutions,whereas the g-PINN bypasses linearization,achieving high accuracy with fewer training data(error<3.8%).The approach is applied to a spherical pressure vessel,solving energy and motion equations under complex boundary conditions.Furthermore,extensive parametric studies are conducted herein to demonstrate the impact of different property profiles and radial locations on the transient evolution and dynamic propagation of thermomechanical stresses.However,the accuracy of the presented approach is evaluated by comparing the g-PINN results,which have an error of less than 3.8%.Moreover,this model offers significant potential for optimizing materials in hightemperature reactors and chemical plants,improving safety,extending lifespan,and reducing thermal fatigue under extreme processing conditions.
基金Supported by Govt. of India,Ministry of Science&Technology,DST(Grant No.DST/INSPIRE FELLOWSHIP/2012/479)
文摘In this paper, we introduce the fractional wavelet transformations (FrWT) involving Han- kel-Clifford integral transformation (HCIIT) on the positive half line and studied some of its basic properties. Also we obtain Parseval's relation and an inversion formula. Examples of fractional powers of Hankel-Clifford integral transformation (FrHClIT) and FrWT are given. Then, we introduce the concept of fractional wavelet packet transformations FrBWPT and FrWPIT, and investigate their properties.
基金supported by the Fundamental Research Funds for the Central Universities(2015QNA43)
文摘In this paper, the compatibility between the integral type gauge transformation and the additional symmetry of the constrained KP hierarchy is given. And the string-equation constraint in matrix models is also derived.
文摘In the investigation on fracture mechanics,the potential function was introduced, and the moving differential equation was constructed. By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses, the dual equation which is constructed from boundary conditions lastly was solved. This method of investigating dynamic crack has become a more systematic one that is used widely. Some problems are encountered when the dynamic crack is studied. After the large investigation on the problems, it is discovered that during the process of mathematic derivation, the method is short of precision, and the derived results in this method are accidental and have no credibility.A model for example is taken to explain the problems existing in initial deriving process of the integral_transformation method of dynamic crack.
文摘This paper serves two purposes. One is to modify Strichartz's results with respect to the asymptotic averages of the Fourier transform of μ on , self-similar measure defined by Hutchinson. Another purpose is to consider a singular integral operator on μ and show that this op- erator is of type (p,p)(1<p<∞).
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
基金financially supported by the Key Research and Development Program of Shandong Province(Grant Nos.2022CXGC020405,2023CXGC010415 and 2025TSGCCZZB0238)the National Natural Science Foundation of China(Grant No.52171288)the financial support from CNPq,FAPERJ,ANP,Embrapii,and China National Petroleum Corporation(CNPC).
文摘This work investigated the dynamic behavior of vertical pipes conveying gas-liquid two-phase flow when subjected to external excitations at both ends.Even with minimal excitation amplitude,resonance can occur when the excitation frequency aligns with the natural frequency of the pipe,significantly increasing the degree of operational risk.The governing equation of motion based on the Euler-Bernoulli beam is derived for the relative deflection with stationary simply supported ends,with the effects of the external excitations represented by source terms distributed along the pipe length.The fourth-order partial differential equation is solved via the generalized integral transform technique(GITT),with the solution successfully verified via comparison with results in the literature.A comprehensive analysis of the vibration phenomena and changes in the motion state of the pipe is conducted for three classes of external excitation conditions:same frequency and amplitude(SFSA),same frequency but different amplitudes(SFDA),and different frequencies and amplitudes(DFDA).The numerical results show that with increasing gas volume fraction,the position corresponding to the maximum vibration displacement shifts upward.Compared with conditions without external excitation,the vibration displacement of the pipe conveying two-phase flow under external excitation increases significantly.The frequency of external excitation has a significant effect on the dynamic behavior of a pipe conveying two-phase flow.
基金financially supported by the National Natural Science Foundation of China(Grant No.52201312).
文摘As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.This work establishes a dynamic behavior model of steel catenary risers(SCRs)with varying curvatures subjected to internal flow and external currents and considers the effects of pipe-soil interactions on the curvature profile.The governing equation is solved via the generalized integral transform technique(GITT),which yields a semi-analytical solution of a high-order nonlinear partial differential equation.Parametric studies are then performed to analyze the effects of varying curvature on the vibration frequency and amplitude of SCRs.The vibration frequency and amplitude increase with the touchdown angle and hang-off angle,although the effect of the hang-off angle is negligible.Additionally,as the curvature increases along the centerline axis,the position of the maximum amplitude of the SCR moves upward.
文摘By using a certain hybrid-type convolution operator,we first introduce a new subclass of normalized analytic functions in the open unit disk.For members of this analytic function class,we then derive several properties and characteristics including(for example)the modified Hadamard products,Holder's inequalities and convolution properties as well as some closure properties under a general family of integral transforms.
基金the National Basic Research Program of China(No.2014CB046300)the National Natural Science Foundation of China(No.51174196)
文摘Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.
基金Project supported by the Science Foundation of China University of Petroleum in Beijing(No.2462013YJRC003)
文摘The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.
基金National Natural Science Foundation of China under Grant Nos.10775097 and 10874174
文摘We propose a new two-fold integration transformation in p-q phase space∫∫^∞-∞dpdq/π e^2i(p-x)(q-y)f(p,q)≡G(x,y),which possesses some well-behaved transformation properties. We apply this transformation to the Weyl ordering of operators, especially those Q-P ordered and P-Q ordered operators.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transform) in phase space quantum mechanics,∫∫∞-∞dp'dq'/π △(q',p')e-2i( p-p')( q-q')=δ( p-P)δ( q-Q),∫∫∞-∞dqdpδ(p-P)δ(q-Q)e2i(p-p')(q-q')=△(q',p'),whereQ,P are the coordinate and momentum operators, respectively. We apply it to study mutual converting formulae among Q-P ordering, P-Q ordering and Weyl ordering of operators. In this way, the contents of phase space quantum mechanics can be enriched. The formula of the Weyl ordering of operators expansion and the technique of integration within the Weyl ordered product of operators are used in this discussion.
文摘We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.
文摘Current research is about the injection of a viscous fluid in the presence of a transverse uniform magnetic field to reduce the sliding drag.There is a slip-on both the slider and the ground in the two cases,for example,a long porous slider and a circular porous slider.By utilizing similarity transformation Navier-Stokes equations are converted into coupled equations which are tackled by Integral Transform Method.Solutions are obtained for different values of Reynolds numbers,velocity slip,and magnetic field.We found that surface slip and Reynolds number has a substantial influence on the lift and drag of long and circular sliders,whereas the magnetic effect is also noticeable.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)the President Foundation of Chinese Academy of Sciences
文摘As a natural and important extension of Fan's paper (Fan Hong-Yi 2010 Chin. Phys. B 19 040305) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation this paper finds a new two-fold complex integration transformation about the Wigner operator A (#, ~) (in its entangled form) in phase space quantum mechanics, and its inverse transformation. In this way, some operator ordering problems regarding to (a1-a2) and (a1+a2) can be solved and the contents of phase space quantum mechanics can be enriched, where ai,ai are bosonic creation and annihilation operators, respectively.
文摘This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.
基金This work was supported by the National Natural Science Foundation of China(No.19772064)by the project of CAS KJ 951-1-20
文摘The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored.
文摘The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations (SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.
文摘This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method. Based on the numerical results, the effect of non-Newtonian coefficient Hc and other parameters on the flow are analysed. It is shown that the annular flow has a shorter characteristic time than the general pipe flow while the correspondent velocity, average velocity have a ... nailer value for a given Hc. Else, when radii ratio keeps unchanged, the shear stress of inner wall of annular flow will change with the inner radius -compared with the general pipe flow and is always smaller than that of the outer wall.