Let n≥2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators.Also...Let n≥2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators.Also, we provide a minimal set for testing n-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke's 290-theorem(or Conway and Schneeberger's 15-theorem) on universal quadratic forms with integer coefficients.展开更多
We determine the set of degrees between some classes of oriented closed (n - 1)-connected 2n-manifolds by using the arithmetic theory of quadratic forms.
基金supported by National Natural Science Foundation of China (Grant No. 12171223)the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010396)。
文摘Let n≥2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators.Also, we provide a minimal set for testing n-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke's 290-theorem(or Conway and Schneeberger's 15-theorem) on universal quadratic forms with integer coefficients.
基金Supported by Morningside Center of Mathematics, National Natural Science Foundation of China (Grant Nos. 10325105 and 10531060)KRF (2003-070-C00001)
文摘We determine the set of degrees between some classes of oriented closed (n - 1)-connected 2n-manifolds by using the arithmetic theory of quadratic forms.