Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
Isoperimetric type inequalities for integral geometric invariants of random lines in the Euclidean space are shown.Entropy inequalities of probability densities on the affine Grassmann manifold of lines are given.
Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.Ho...Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.展开更多
The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuse...The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuselage structures.ISP is a relatively new structure in aircraft industries and is considered the most significant development in a decade.These structures have the potential to replace the conventional stiffened panel due to the emergence of manufacturing technology,including welding,high-speed machining(HSM),extruding,and bonding.Although laser beam welding(LBW)and friction stir welding(FSW)have been applied in aircraft companies,many investigations into ISP continue to be conducted.In this review article,the current state of understanding and advancement of ISP structure is addressed.A particular explanation has been given to(a)buckling performance,(b)fatigue performance of the ISP,(c)modeling and simulation aspects,and(d)the impact of manufacturing decisions in welding processes on the final structural behavior of the ISP during service.Compared to riveted panels,machined ISP had a better compressive buckling load,and FSW integral panels had a lower buckling load than riveted panels.Compressive residual stress decreased the stress intensity factor(SIF)rates,slowing down the growth of fatigue cracks as occurred in FSW and LBW ISP.展开更多
In this paper, in Section 1, we have described some equations and theorems concerning the Lebesgue integral and the Lebesgue measure. In Section 2, we have described the possible mathematical applications, of Lebesgue...In this paper, in Section 1, we have described some equations and theorems concerning the Lebesgue integral and the Lebesgue measure. In Section 2, we have described the possible mathematical applications, of Lebesgue integration, in some equations concerning various sectors of Chern-Simons theory and Yang-Mills gauge theory, precisely the two dimensional quantum Yang-Mills theory. In conclusion, in Section 3, we have described also the possible mathematical connections with some sectors of String Theory and Number Theory, principally with some equations concerning the Ramanujan’s modular equations that are related to the physical vibrations of the bosonic strings and of the superstrings, some Ramanujan’s identities concerning π and the zeta strings.展开更多
This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanis...This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanism is presented to structure the adaptive integral terminal sliding mode control(SMC)strategy.The control design consists of compensation control and nominal control,which improves the rapidity and accuracy of trajectory tracking.The smooth saturation model based on the error function is applied to approximate the voltage saturation phenomenon.Additionally,to deal with the adverse effects of various unknown disturbances,including model parameter uncertainties and unknown external load disturbances,an improved disturbance observer(DO)is proposed.This observer effectively suppresses the fluctuations caused by fixed gain during the starting period of the system.Finally,the experimental results under different conditions show that the proposed strategy has good tracking and disturbance suppression performances.展开更多
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
A practical process method for precise integration of SiC_(f)/SiC composite(CMC)and a Ni-based superalloy(K403)was proposed in this study.It involves Nb coating pretreatment of the CMC via the chemical vapor depositio...A practical process method for precise integration of SiC_(f)/SiC composite(CMC)and a Ni-based superalloy(K403)was proposed in this study.It involves Nb coating pretreatment of the CMC via the chemical vapor deposition(CVD)at 1000℃and subsequent integral precision casting between the pretreated CMC and the K403 superalloy melt.The method solves the difficulty for the dissimilar material to be cast together,forming a robust bonding interface with an average shear strength of 94.8 MPa at room temperature.During the pretreatment process,the Nb reacted with the CMC,forming a reactive coating with the microstructure composed of NbC,Nb2C and Nb5Si3 phases.In the following integral casting,the Nb reactive coating effectively blocked detrimental graphitization reaction between the Ni element in the superalloy melt and the CMC,and mitigated the interface thermal stress generated by both the mismatch of thermal expansion coefficients and temperature difference,resulting in the increase of interfacial strength.The typical interfacial microstructure consists of the CMC,NbC,NbSi_(2)/NbC,SiC,NbSi_(2),Nb_(2)C,Nb_(5)Si_(3),Al_(4)C_(3),Nb_(2)Al/γ/γ'and MC(M=W,Mo,Ti).A formula for estimating the interfacial thermal stress of an integrated cast was derived.展开更多
Kirchhoff integral migration imaging is widely used in industrial production due to its advantages of not being limited by observation systems,good target imaging effects,and high computational efficiency.Vertical tra...Kirchhoff integral migration imaging is widely used in industrial production due to its advantages of not being limited by observation systems,good target imaging effects,and high computational efficiency.Vertical transversely isotropic(VTI)media,as a typical anisotropic media,has always been a primary focus of anisotropic migration imaging research.We focus on the problems of low accuracy and efficiency in travel-time calculations associated with conventional Kirchhoff integral migration for VTI media.A travel-time calculation method based on physical-informed neural network(PINN)for VTI media is introduced into the process of Kirchhoff integral migration imaging.Model experiments and field data processing have shown that the travel-time calculation based on PINN can significantly improve both the accuracy and efficiency when compared to traditional finite difference algorithms,there-by enabling high-precision Kirchhoff integral migration imaging for VTI media.展开更多
This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω i...This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.展开更多
In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,...In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,the boundedness of this kind of multilinear commutators on product of weighted Lebesgue spaces can be obtained.展开更多
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi...This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.展开更多
This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded ...This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded materials with varying properties.The model employs a multilayer heterostructure homogeneous approach within the FIT to linearize and approximate various parameters,such as the thermal conductivity,specific heat,density,stiffness,thermal expansion coefficient,and Poisson’s ratio.The provided FIT and g-PINN techniques are highly proficient in solving the PDEs of energy equations and equations of motion in a spherical domain,particularly when dealing with space-time dependent boundary conditions.The FIT method simplifies the governing partial differential equations into ordinary differential equations for efficient solutions,whereas the g-PINN bypasses linearization,achieving high accuracy with fewer training data(error<3.8%).The approach is applied to a spherical pressure vessel,solving energy and motion equations under complex boundary conditions.Furthermore,extensive parametric studies are conducted herein to demonstrate the impact of different property profiles and radial locations on the transient evolution and dynamic propagation of thermomechanical stresses.However,the accuracy of the presented approach is evaluated by comparing the g-PINN results,which have an error of less than 3.8%.Moreover,this model offers significant potential for optimizing materials in hightemperature reactors and chemical plants,improving safety,extending lifespan,and reducing thermal fatigue under extreme processing conditions.展开更多
In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher ac...In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods.展开更多
To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)...To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)is proposed.By constructing an ideal control reference model,a dynamic correlation between output deviation and uncompensated disturbances is established,and a dual-loop compensation mechanism is designed.Based on theoretical analysis and frequency-domain characteristics of typical first/second-order systems,this method maintains the parameter-tuning advantages of LADRC while reducing disturbance effects by 50%and introducing no phase lag during low-frequency disturbance suppression.Simulations on second-order systems verify its robustness under parameter perturbations,gain mismatch,and complex disturbances,and an optimized design scheme for the deviation compensator is proposed to suppress discontinuous measurement noise interference.Finally,the engineering effectiveness of this method in precision motion control is validated on an electromagnetic suspension platform,providing a new approach to improving the control performance of LADRC in environments with uncertain disturbances.展开更多
This article delves Chern's conjecture for hypersurfaces with constant second fundamental form squared length S in the spherical space.At present,determining whether the third gap point of S is 2n remains unsolved...This article delves Chern's conjecture for hypersurfaces with constant second fundamental form squared length S in the spherical space.At present,determining whether the third gap point of S is 2n remains unsolved yet.First,we investigate the height functions and their properties of the position vector and normal vector in natural coordinate vectors,and then prove the existence of a Simons-type integral formula on the hypersurface that simultaneously includes the first,second,and third gap point terms of S.These results can provide new avenues of thought and methods for solving Chern's conjecture.展开更多
Firstly,the definition of k-monogenic function withα-weight in superspace is given and a series of properties of this function are discussed.Then the Cauchy-Pompeiu formula for k-monogenic function withα-weight is o...Firstly,the definition of k-monogenic function withα-weight in superspace is given and a series of properties of this function are discussed.Then the Cauchy-Pompeiu formula for k-monogenic function withα-weight is obtained.Lastly,the Cauchy integral theorem for k-monogenic function withα-weight is proved.展开更多
We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argum...We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.展开更多
The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,a...In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.展开更多
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
文摘Isoperimetric type inequalities for integral geometric invariants of random lines in the Euclidean space are shown.Entropy inequalities of probability densities on the affine Grassmann manifold of lines are given.
文摘Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.
基金The authors express their gratitude to Universiti Pura Malaysia(UPM),Malaysia for granting Putra IPS vote number 9742900.
文摘The increasing demand to decrease manufacturing costs and weight reduction is driving the aircraft industry to change the use of conventional riveted stiffened panels to integral stiffened panels(ISP)for aircraft fuselage structures.ISP is a relatively new structure in aircraft industries and is considered the most significant development in a decade.These structures have the potential to replace the conventional stiffened panel due to the emergence of manufacturing technology,including welding,high-speed machining(HSM),extruding,and bonding.Although laser beam welding(LBW)and friction stir welding(FSW)have been applied in aircraft companies,many investigations into ISP continue to be conducted.In this review article,the current state of understanding and advancement of ISP structure is addressed.A particular explanation has been given to(a)buckling performance,(b)fatigue performance of the ISP,(c)modeling and simulation aspects,and(d)the impact of manufacturing decisions in welding processes on the final structural behavior of the ISP during service.Compared to riveted panels,machined ISP had a better compressive buckling load,and FSW integral panels had a lower buckling load than riveted panels.Compressive residual stress decreased the stress intensity factor(SIF)rates,slowing down the growth of fatigue cracks as occurred in FSW and LBW ISP.
文摘In this paper, in Section 1, we have described some equations and theorems concerning the Lebesgue integral and the Lebesgue measure. In Section 2, we have described the possible mathematical applications, of Lebesgue integration, in some equations concerning various sectors of Chern-Simons theory and Yang-Mills gauge theory, precisely the two dimensional quantum Yang-Mills theory. In conclusion, in Section 3, we have described also the possible mathematical connections with some sectors of String Theory and Number Theory, principally with some equations concerning the Ramanujan’s modular equations that are related to the physical vibrations of the bosonic strings and of the superstrings, some Ramanujan’s identities concerning π and the zeta strings.
基金supported by the National Natural Science Foundation under Grant 62273189the Shandong Province Natural Science Foundation under Grant ZR2021MF005Systems Science Plus Joint Research Program of Qingdao University under Grant XT2024201 of China supporting this research work.
文摘This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanism is presented to structure the adaptive integral terminal sliding mode control(SMC)strategy.The control design consists of compensation control and nominal control,which improves the rapidity and accuracy of trajectory tracking.The smooth saturation model based on the error function is applied to approximate the voltage saturation phenomenon.Additionally,to deal with the adverse effects of various unknown disturbances,including model parameter uncertainties and unknown external load disturbances,an improved disturbance observer(DO)is proposed.This observer effectively suppresses the fluctuations caused by fixed gain during the starting period of the system.Finally,the experimental results under different conditions show that the proposed strategy has good tracking and disturbance suppression performances.
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
基金the financial support from the Fundamental Research Funds for the Central Universities,China(No.FRF-GF-18-006A)。
文摘A practical process method for precise integration of SiC_(f)/SiC composite(CMC)and a Ni-based superalloy(K403)was proposed in this study.It involves Nb coating pretreatment of the CMC via the chemical vapor deposition(CVD)at 1000℃and subsequent integral precision casting between the pretreated CMC and the K403 superalloy melt.The method solves the difficulty for the dissimilar material to be cast together,forming a robust bonding interface with an average shear strength of 94.8 MPa at room temperature.During the pretreatment process,the Nb reacted with the CMC,forming a reactive coating with the microstructure composed of NbC,Nb2C and Nb5Si3 phases.In the following integral casting,the Nb reactive coating effectively blocked detrimental graphitization reaction between the Ni element in the superalloy melt and the CMC,and mitigated the interface thermal stress generated by both the mismatch of thermal expansion coefficients and temperature difference,resulting in the increase of interfacial strength.The typical interfacial microstructure consists of the CMC,NbC,NbSi_(2)/NbC,SiC,NbSi_(2),Nb_(2)C,Nb_(5)Si_(3),Al_(4)C_(3),Nb_(2)Al/γ/γ'and MC(M=W,Mo,Ti).A formula for estimating the interfacial thermal stress of an integrated cast was derived.
基金funded by the Open Fund of No.1 Institute of Geology and Mineral Resources of Shan-dong Province(No.2022DY03)the National Natural Sci-ence Foundation of China(Nos.42074138 and 42206195)the Wenhai Program of the ST Fund of Laoshan Labo-ratory(No.LSKJ202204803).
文摘Kirchhoff integral migration imaging is widely used in industrial production due to its advantages of not being limited by observation systems,good target imaging effects,and high computational efficiency.Vertical transversely isotropic(VTI)media,as a typical anisotropic media,has always been a primary focus of anisotropic migration imaging research.We focus on the problems of low accuracy and efficiency in travel-time calculations associated with conventional Kirchhoff integral migration for VTI media.A travel-time calculation method based on physical-informed neural network(PINN)for VTI media is introduced into the process of Kirchhoff integral migration imaging.Model experiments and field data processing have shown that the travel-time calculation based on PINN can significantly improve both the accuracy and efficiency when compared to traditional finite difference algorithms,there-by enabling high-precision Kirchhoff integral migration imaging for VTI media.
文摘This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.
基金Supported by the National Natural Science Foundation of China(11671397,11571160,12071052)the Yue Qi Young Scholar of China University of Mining and Technology(Beijing)。
文摘In this paper,the authors study the multilinear commutators generated by a class of multilinear singular integral operators with generalized kernels and Lipschitz functions.By establishing the sharp maximal estimates,the boundedness of this kind of multilinear commutators on product of weighted Lebesgue spaces can be obtained.
基金supported by the Artificial Intelligence Innovation and Development Special Fund of Shanghai(No.2019RGZN01041)the National Natural Science Foundation of China(No.92048205).
文摘This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.
文摘This study introduces a novel mathematical model that combines the finite integral transform(FIT)and gradientenhanced physics-informed neural network(g-PINN)to address thermomechanical problems in functionally graded materials with varying properties.The model employs a multilayer heterostructure homogeneous approach within the FIT to linearize and approximate various parameters,such as the thermal conductivity,specific heat,density,stiffness,thermal expansion coefficient,and Poisson’s ratio.The provided FIT and g-PINN techniques are highly proficient in solving the PDEs of energy equations and equations of motion in a spherical domain,particularly when dealing with space-time dependent boundary conditions.The FIT method simplifies the governing partial differential equations into ordinary differential equations for efficient solutions,whereas the g-PINN bypasses linearization,achieving high accuracy with fewer training data(error<3.8%).The approach is applied to a spherical pressure vessel,solving energy and motion equations under complex boundary conditions.Furthermore,extensive parametric studies are conducted herein to demonstrate the impact of different property profiles and radial locations on the transient evolution and dynamic propagation of thermomechanical stresses.However,the accuracy of the presented approach is evaluated by comparing the g-PINN results,which have an error of less than 3.8%.Moreover,this model offers significant potential for optimizing materials in hightemperature reactors and chemical plants,improving safety,extending lifespan,and reducing thermal fatigue under extreme processing conditions.
基金National Natural Science Foundation of China(No.52375236)Fundamental Research Funds for the Central Universities,China(No.23D110316)。
文摘In the structural reliability analysis,the first-order reliability method(FORM)often yields significant errors when addressing nonlinear problems.Although the second-order reliability method(SORM)can provide higher accuracy,the additional computation of the Hessian matrix leads to lower computational efficiency.Additionally,when the dimensionality of the random variables is high,the approximation formula of SORM can result in larger errors.To address these issues,a structural reliability analysis method based on Kriging and spherical cap area integral is proposed.Firstly,this method integrates FORM with the quasi-Newton algorithm Broyden-Fletcher-Goldfarb-Shanno(BFGS),trains the Kriging model by using sample points from the algorithm’s iteration process,and combines the Kriging model with gradient information to approximate the Hessian matrix.Then,the failure surface is approximated as a rotating paraboloid,utilizing the spherical cap to replace the complex surface.For the n-dimensional case,the hyperspherical cap area expression is combined with the integral method to calculate the failure probability.Finally,the method is validated through three examples,demonstrating improved computational accuracy and efficiency compared to traditional methods.
基金supported by the National Natural Science Foundation of China(Nos.62063009,52262050)the National Key Research and Development Program during the 14th 5-Year Plan(No.2023YFB4302100)the Major Science and Technology Research and Development Special Project in Jiangxi Province(No.20232ACE01011).
文摘To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)is proposed.By constructing an ideal control reference model,a dynamic correlation between output deviation and uncompensated disturbances is established,and a dual-loop compensation mechanism is designed.Based on theoretical analysis and frequency-domain characteristics of typical first/second-order systems,this method maintains the parameter-tuning advantages of LADRC while reducing disturbance effects by 50%and introducing no phase lag during low-frequency disturbance suppression.Simulations on second-order systems verify its robustness under parameter perturbations,gain mismatch,and complex disturbances,and an optimized design scheme for the deviation compensator is proposed to suppress discontinuous measurement noise interference.Finally,the engineering effectiveness of this method in precision motion control is validated on an electromagnetic suspension platform,providing a new approach to improving the control performance of LADRC in environments with uncertain disturbances.
文摘This article delves Chern's conjecture for hypersurfaces with constant second fundamental form squared length S in the spherical space.At present,determining whether the third gap point of S is 2n remains unsolved yet.First,we investigate the height functions and their properties of the position vector and normal vector in natural coordinate vectors,and then prove the existence of a Simons-type integral formula on the hypersurface that simultaneously includes the first,second,and third gap point terms of S.These results can provide new avenues of thought and methods for solving Chern's conjecture.
基金supported by the National Science Foundation of China(No.11571089,No.11871191)the National Science Foundation of Hebei(A2022208007,A2024208005)+1 种基金the Hebei University of Science and Technology Dr.Fund(No.1181348)the Hebei Normal University Dr.Fund(No.L2018201).
文摘Firstly,the definition of k-monogenic function withα-weight in superspace is given and a series of properties of this function are discussed.Then the Cauchy-Pompeiu formula for k-monogenic function withα-weight is obtained.Lastly,the Cauchy integral theorem for k-monogenic function withα-weight is proved.
基金Supported by National Natural Science Foundation of China(Grant No.62363005).
文摘We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
文摘In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.