In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,a...In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.展开更多
The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic sol...The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.展开更多
The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable syst...A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.展开更多
We conduct two group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg-de Vries equations. One reduction ...We conduct two group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg-de Vries equations. One reduction is local, replacing the spectral parameter with its negative and the other is nonlocal, replacing the spectral parameter with itself. Then by taking advantage of distribution of eigenvalues, we generate soliton solutions from the reflectionless Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues.展开更多
We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems,...We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifthorder mKdV equations are given.展开更多
By using the Jacobi elliptic-function method, this paper obtains the periodic solutions for coupled integrable dispersionless equations. The periodic solutions include some kink and anti-kink solitons.
For the integrable couplings of Ablowitz-Kaup-Newell-Segur(ICAKNS) equations, N-fold Darboux transformation(DT) TN, which is a 4 × 4 matrix, is constructed in this paper. Each element of this matrix is expressed ...For the integrable couplings of Ablowitz-Kaup-Newell-Segur(ICAKNS) equations, N-fold Darboux transformation(DT) TN, which is a 4 × 4 matrix, is constructed in this paper. Each element of this matrix is expressed by a ratio of the(4N + 1)-order determinant and 4N-order determinant of eigenfunctions. By making use of these formulae,the determinant expressions of N-transformed new solutions p^([N ]), q^([N ]), r^([N ])and s^([N ])are generated by this N-fold DT.Furthermore, when the reduced conditions q =-p*and s =-r*are chosen, we obtain determinant representations of N-fold DT and N-transformed solutions for the integrable couplings of nonlinear Schr?dinger(ICNLS) equations.Starting from the zero seed solutions, one-soliton solutions are explicitly given as an example.展开更多
Based on a soliton hierarchy associated with so(3,R),we construct two integrable nonlocal PT-symmetric generalized mKdV equations.The key step is to formulate two nonlocal reverse-spacetime similarity transformations ...Based on a soliton hierarchy associated with so(3,R),we construct two integrable nonlocal PT-symmetric generalized mKdV equations.The key step is to formulate two nonlocal reverse-spacetime similarity transformations for the involved spectral matrix,and therefore,integrable nonlocal complex and real reverse-spacetime generalized so(3,R)-mKdV equations of fifth-order are presented.The resulting reduced nonlocal integrable equations inherit infinitely many commuting symmetries and conservation laws.展开更多
Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletrans...Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically.展开更多
In this paper, some integrable types of more general nonlinear ordinary differential equations of higher-orders are proposed in virtue of Leibnitz formula, and formulas of higher-order derivatives of the composite fun...In this paper, some integrable types of more general nonlinear ordinary differential equations of higher-orders are proposed in virtue of Leibnitz formula, and formulas of higher-order derivatives of the composite functions as well as substitution variables. The expressions for the general integrations of some of the equations are presented. The results obtained are the generalization of those in the references. Finally, some examples are also given.展开更多
In this paper, by introducing a new transformation, the bilinear form of the coupled integrable dispersionless (CID) equations is derived. It will be shown that this bilineax form is easier to perform the standard H...In this paper, by introducing a new transformation, the bilinear form of the coupled integrable dispersionless (CID) equations is derived. It will be shown that this bilineax form is easier to perform the standard Hirota process. One-, two-, and three-soliton solutions are presented. Furthermore, the N-soliton solutions axe derived.展开更多
With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various...With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.展开更多
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equat...It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations.展开更多
We study the axisymmetric frictionless indentation problem of a piezoelectric semiconductor(PSC)thin film perfectly bonded to a semi-infinite isotropic elastic substrate by a rigid and insulating spherical indenter.Th...We study the axisymmetric frictionless indentation problem of a piezoelectric semiconductor(PSC)thin film perfectly bonded to a semi-infinite isotropic elastic substrate by a rigid and insulating spherical indenter.The Hankel integral transformation is first employed to derive the general solutions for the governing differential equations of the PSC film and elastic substrate.Then,using the boundary and interface conditions,the complicated indentation problem is reduced to numerically solve a Fredholm integral equation of the second kind.Numerical results are given to demonstrate the effects of semiconducting property,film thickness as well as Young’s modulus and Poisson’s ratio of the substrate on the indentation responses.The obtained findings will contribute to the establishment of indentation experiments for PSC film/substrate systems.展开更多
This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is ...This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.展开更多
The fracture behavior of superconducting tapes with central and edge oblique cracks subject to electromagnetic forces is investigated. Maxwell's equations and the critical state-Bean model are used to analytically...The fracture behavior of superconducting tapes with central and edge oblique cracks subject to electromagnetic forces is investigated. Maxwell's equations and the critical state-Bean model are used to analytically determine the magnetic flux density and electromagnetic force distributions in superconducting tapes containing central and edge oblique cracks. The distributed dislocation technique(DDT) transforms the mixed boundary value problem into a Cauchy singular integral equation, which is then solved by the Gauss-Chebyshev quadrature method to determine the stress intensity factors(SIFs).The model's accuracy is validated by comparing the calculated electromagnetic force distribution for the edge oblique crack and the SIFs for both crack types with the existing results. The findings indicate that the current and electromagnetic forces are significantly affected by the crack length and oblique angle. Specifically, for central oblique cracks, a smaller oblique angle enhances the risk of crack propagation, and a higher initial magnetization intensity poses greater danger under field cooling(FC) excitation. In contrast, for edge oblique cracks, a larger angle increases the likelihood of tape fractures. This study provides important insights into the fracture behavior and mechanical failure mechanisms of superconducting tapes with oblique cracks.展开更多
Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds...Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.展开更多
Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenk...Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged–hinged, clamped–clamped and clamped–hinged ends. For a hinged–hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped–clamped and clamped–hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short,explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.展开更多
文摘In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
文摘A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.
基金supported in part by NSFC under the grants 11975145, 11972291 and 51771083the Ministry of Science and Technology of China (G2021016032L)the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020)。
文摘We conduct two group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg-de Vries equations. One reduction is local, replacing the spectral parameter with its negative and the other is nonlocal, replacing the spectral parameter with itself. Then by taking advantage of distribution of eigenvalues, we generate soliton solutions from the reflectionless Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11975145, 11972291, and 51771083)the Ministry of Science and Technology of China (Grant No. G2021016032L)the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 17 KJB 110020)。
文摘We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifthorder mKdV equations are given.
基金supported by the National Natural Science Foundation of China (Grant Nos.40975028 and 40805022)
文摘By using the Jacobi elliptic-function method, this paper obtains the periodic solutions for coupled integrable dispersionless equations. The periodic solutions include some kink and anti-kink solitons.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61771174,11371326,11371361,11301454,and11271168Natural Science Fund for Colleges and Universities of Jiangsu Province of China under Grant No.17KJB110020General Research Project of Department of Education of Zhejiang Province(Y201636538)
文摘For the integrable couplings of Ablowitz-Kaup-Newell-Segur(ICAKNS) equations, N-fold Darboux transformation(DT) TN, which is a 4 × 4 matrix, is constructed in this paper. Each element of this matrix is expressed by a ratio of the(4N + 1)-order determinant and 4N-order determinant of eigenfunctions. By making use of these formulae,the determinant expressions of N-transformed new solutions p^([N ]), q^([N ]), r^([N ])and s^([N ])are generated by this N-fold DT.Furthermore, when the reduced conditions q =-p*and s =-r*are chosen, we obtain determinant representations of N-fold DT and N-transformed solutions for the integrable couplings of nonlinear Schr?dinger(ICNLS) equations.Starting from the zero seed solutions, one-soliton solutions are explicitly given as an example.
基金supported in part by the‘Qing Lan Project’of Jiangsu Province(2020)the‘333 Project’of Jiangsu Province(No.BRA2020246)+1 种基金the National Natural Science Foundation of China(12271488,11975145,and 11972291)the Ministry of Science and Technology of China(G2021016032L).
文摘Based on a soliton hierarchy associated with so(3,R),we construct two integrable nonlocal PT-symmetric generalized mKdV equations.The key step is to formulate two nonlocal reverse-spacetime similarity transformations for the involved spectral matrix,and therefore,integrable nonlocal complex and real reverse-spacetime generalized so(3,R)-mKdV equations of fifth-order are presented.The resulting reduced nonlocal integrable equations inherit infinitely many commuting symmetries and conservation laws.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund No.BUAA-SKLSDE-09KF-04+2 种基金Supported Project No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically.
文摘In this paper, some integrable types of more general nonlinear ordinary differential equations of higher-orders are proposed in virtue of Leibnitz formula, and formulas of higher-order derivatives of the composite functions as well as substitution variables. The expressions for the general integrations of some of the equations are presented. The results obtained are the generalization of those in the references. Finally, some examples are also given.
基金National Natural Science Foundation of China under Grant No.10726063
文摘In this paper, by introducing a new transformation, the bilinear form of the coupled integrable dispersionless (CID) equations is derived. It will be shown that this bilineax form is easier to perform the standard Hirota process. One-, two-, and three-soliton solutions are presented. Furthermore, the N-soliton solutions axe derived.
文摘With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.
基金Supported by the Chinese Basic Research Project"Nonlinear Science"
文摘It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations.
基金supported by the National Natural Science Foundation of China(Nos.12072209,U21A20430,12192211,12472155)the S&T Program of Hebei(225676162GH).
文摘We study the axisymmetric frictionless indentation problem of a piezoelectric semiconductor(PSC)thin film perfectly bonded to a semi-infinite isotropic elastic substrate by a rigid and insulating spherical indenter.The Hankel integral transformation is first employed to derive the general solutions for the governing differential equations of the PSC film and elastic substrate.Then,using the boundary and interface conditions,the complicated indentation problem is reduced to numerically solve a Fredholm integral equation of the second kind.Numerical results are given to demonstrate the effects of semiconducting property,film thickness as well as Young’s modulus and Poisson’s ratio of the substrate on the indentation responses.The obtained findings will contribute to the establishment of indentation experiments for PSC film/substrate systems.
基金the National Science,Research and Innovation Fund(NSRF)King Mongkuts University of Technology North Bangkok under contract no.KMUTNB-FF-68-B-08.
文摘This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.
基金Project supported by the National Natural Science Foundation of China (Nos. 12232005 and 12072101)the Ningxia Natural Science Foundation of China (No. 2024AAC04004)。
文摘The fracture behavior of superconducting tapes with central and edge oblique cracks subject to electromagnetic forces is investigated. Maxwell's equations and the critical state-Bean model are used to analytically determine the magnetic flux density and electromagnetic force distributions in superconducting tapes containing central and edge oblique cracks. The distributed dislocation technique(DDT) transforms the mixed boundary value problem into a Cauchy singular integral equation, which is then solved by the Gauss-Chebyshev quadrature method to determine the stress intensity factors(SIFs).The model's accuracy is validated by comparing the calculated electromagnetic force distribution for the edge oblique crack and the SIFs for both crack types with the existing results. The findings indicate that the current and electromagnetic forces are significantly affected by the crack length and oblique angle. Specifically, for central oblique cracks, a smaller oblique angle enhances the risk of crack propagation, and a higher initial magnetization intensity poses greater danger under field cooling(FC) excitation. In contrast, for edge oblique cracks, a larger angle increases the likelihood of tape fractures. This study provides important insights into the fracture behavior and mechanical failure mechanisms of superconducting tapes with oblique cracks.
基金the Bilateral Science and Technology Collaboration Program of Australia 1998 the Natural Science Foundation of China (No. 1
文摘Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.
基金the School of Civil and Environmental Engineering at Nanyang Technological University, Singapore for kindly supporting this research topic
文摘Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged–hinged, clamped–clamped and clamped–hinged ends. For a hinged–hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped–clamped and clamped–hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short,explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.