With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various...With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.展开更多
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar...The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.展开更多
As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudo...As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudostructure on which conservation laws are fulfilled (A closed dual form describes a pseudostructure. And a closed exterior form, as it is known, describes a conservative quantity, since the differential of closed form is equal to zero). It has been shown that closed inexact exterior forms, which describe physical structures, are obtained from the equations of mathematical physics. This process proceeds spontaneously under realization of any degrees of freedom of the material medium described. Such a process describes an emergence of physical structures and this is accompanied by an appearance of observed formations such as fluctuations, waves, turbulent pulsations and so on.展开更多
To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the...To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks.展开更多
To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of...To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of 6061-T651 aluminum alloy plates with a thickness of 75 mm produced by two domestic manufacturers in China.The results indicate that both types of plates exhibit highly consistent and symmetrical M-shaped residual stress profile along the thickness direction,manifested as surface layer compression and core tension.The strain energy density across all specimens ranges from 1.27 kJ/m^(3)to 1.43 kJ/m^(3).Machining deformation simulations of an aerospace component incorporating these measured stresses showed minimal final deformation difference between the material sources,with a maximum deviation of only 0.009 mm across specimens.These findings provide critical data for material selection and deformation control in aerospace manufacturing.展开更多
Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversibl...Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.展开更多
Background Cetobacterium somerae,a symbiotic microorganism resident in various fish intestines,is recognized for its beneficial effects on fish gut health.However,the mechanisms underlying the effects of C.somerae on ...Background Cetobacterium somerae,a symbiotic microorganism resident in various fish intestines,is recognized for its beneficial effects on fish gut health.However,the mechanisms underlying the effects of C.somerae on gut health remain unclear.In this experiment,we investigated the influence of C.somerae(CGMCC No.28843)on the growth performance,intestinal digestive and absorptive capacity,and intestinal structural integrity of juvenile grass carp(Ctenopharyngodon idella)and explored its potential mechanisms.Methods A cohort of 2,160 juvenile grass carp with an initial mean body weight of 11.30±0.01 g were randomly allocated into 6 treatment groups,each comprising 6 replicates(60 fish per replicate).The experimental diets were supplemented with C.somerae at graded levels of 0.00(control),0.68×10^(9),1.35×10^(9),2.04×10^(9),2.70×10^(9),and 3.40×10^(9)cells/kg feed.Following a 10-week experimental period,biological samples were collected for subsequent analyses.Results Dietary supplementation with C.somerae at 1.35×10^(9)cells/kg significantly enhanced growth performance,intestinal development,and nutrient retention rate in juvenile grass carp(P<0.05).The treatment resulted in increased intestinal acetic acid concentration and enhanced activities of digestive enzymes and brush border enzymes(P<0.05).Furthermore,it reduced intestinal permeability(P<0.05),preserved tight junctions(TJ)ultrastructural integrity,and increased the expression of TJ and adherens junctions(AJ)biomarkers at both protein and transcriptional levels(P<0.05).Mechanistically,these effects may be correlated with enhanced antioxidant capacity and coordinated modulation of the RhoA/ROCK,Sirt1,and PI3K/AKT signaling pathways.The appropriate supplementation levels,based on weight gain rate,feed conversion ratio,the activity of serum diamine oxidase and the content of lipopolysaccharide,were 1.27×10^(9),1.27×10^(9),1.34×10^(9)and 1.34×10^(9)cells/kg,respectively.Conclusions C.somerae improved intestinal digestive and absorptive capacity of juvenile grass carp,maintained intestinal structural integrity,and thus promoted their growth and development.This work demonstrates the potential of C.somerae as a probiotic for aquatic animals and provides a theoretical basis for its utilization in aquaculture.展开更多
With the help of skew-symmetric differential forms, the hidden properties of the mathematical physics equations that describe discrete quantum transitions and emergence the physical structures are investigated. It is ...With the help of skew-symmetric differential forms, the hidden properties of the mathematical physics equations that describe discrete quantum transitions and emergence the physical structures are investigated. It is shown that the mathematical physics equations possess a unique property. They can describe discrete quantum transitions, emergence of physical structures and occurrence observed formations. However, such a property possesses only equations on which no additional conditions, namely, the conditions of integrability, are imposed. The intergrability conditions are realized from the equations themselves. Just under realization of integrability conditions double solutions to the mathematical physics equations, which describe discrete transitions and so on, are obtained. The peculiarity consists in the fact that the integrability conditions do not directly follow from the mathematical physics equations;they are realized under the description of evolutionary process. The hidden properties of differential equations were discovered when studying the integrability of differential equations of mathematical physics that depends on the consistence between the derivatives in differential equations along different directions and on the consistence of equations in the set of equations. The results of this work were obtained with the help of skew-symmetric differential forms that possess a nontraditional mathematical apparatus such as nonidentical relations, degenerate transformations and the transition from nonintegrable manifolds to integrable structures. Such results show that mathematical physics equations can describe quantum processes.展开更多
The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the...The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches.展开更多
The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of...The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.展开更多
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass...Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.展开更多
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei...In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.展开更多
This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,wit...This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,with its ability to engineer materials at the atomic scale,offers significant improvements in reactor safety,efficiency,and longevity.In fission reactors,nanomaterials enhance fuel rod integrity,optimize thermal management,and improve in-core instrumentation.Fusion reactors benefit from nanostructured materials that bolster containment and heat dissipation,addressing critical challenges in sustaining fusion reactions.The integration of SMAs(shape memory alloys),or MMs,further amplifies these advancements.These materials,characterized by their ability to revert to a pre-defined shape under thermal conditions,provide self-healing capabilities,adaptive structural components,and enhanced magnetic confinement.The synergy between nanotechnology and MMs represents a paradigm shift in nuclear reactor technology,promising a future of cleaner,more efficient,and safer nuclear energy production.This innovative approach positions the nuclear industry to meet the growing global energy demand while addressing environmental and safety concerns.展开更多
Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement b...Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.展开更多
The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol c...The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol combining magnetic resonance imaging(MRI)and positron emission tomography(PET)to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex.Rats were subjected to permanent middle cerebral artery occlusion.The motor function of the rats was examined using the DigiGait test.MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex.[^(18)F]-fluorodeoxyglucose PET was used to detect glucose metabolism.Blood oxygen level-dependent(BOLD)-functional MRI(fMRI)was used to identify the regional brain activity and functional connectivity(FC).In addition,the expression of neuroplasticity-related signaling pathways including neurotrophic factors(BDNF/CREB),axonal guidance proteins(Robo1/Slit2),and axonal growth-inhibitory proteins(NogoA/NgR)as well as downstream proteins(RhoA/ROCK)in the bilateral sensorimotor cortex were measured by Western blots.Our results showed the three-phase EE improved the walking ability.Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex.PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention.Specifically,the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex.In addition,FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention.In addition,a strong correlation was found between increased functional connectivity and improved motor performance of limbs.Specifically,EE regulated the expression of neuroplasticity-related signaling,involving BDNF/CREB,Slit2/Robo1,as well as the axonal growth–inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex.Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits.These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.展开更多
Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the...Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects.This study aims to integrate methods of service life estimation and residual life assessment,which are based on operational loads,into the existing infinite life verification framework to further ensure the operational safety of subway trains.Design/methodology/approach–Operational loads and fatigue loading spectra were determined through the field test.The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate.The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams.The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation.Finally,the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.Findings–Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0,the metro car body could meet the design life requirement of 30 years or 6.6 million km.However,three out of five fatigue key points were significantly influenced by the operational loads,which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body.For a projected design life of 30 years,the tolerance depth is 12.2 mm,which can underscore a relatively robust damage tolerance capability.Originality/value–The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results.The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment.The damage tolerance life can be effectively related by a newly developed equation in this study.It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.展开更多
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ...Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.展开更多
Planar cross-scale structures encode position and posture,enabling nanometer-level accuracy and multi-scale cascaded precision,emerging as a potential sensing device for semiconductor manufacturing and inspection syst...Planar cross-scale structures encode position and posture,enabling nanometer-level accuracy and multi-scale cascaded precision,emerging as a potential sensing device for semiconductor manufacturing and inspection systems.However,the fabrication of cross-scale hybrid structures,which is the integration of structures spanning three orders of magnitude in feature dimensions(500 nm-1.5 mm)on single substrates,still faces challenges.This requires fabrication of submicron-periodic encoder arrays(reflective regions)and micron-scale non-periodic absolute code tracks(transmissive regions)while maintaining directional consistency.Herein,we demonstrate a mask-interference hybrid lithography method to generate cross-scale structures.The multi-step lithography process integrates interference lithography for fabricating subwavelength periodic structures and mask lithography for patterning millimeter and micrometer-scale non-periodic structures.Alignment marks etched on the mask enable direction consistency between structural zones.The transmissive and reflective structures are differentially processed through region-specific etching and deposition.The effectiveness of this process in realizing the fabrication of hybrid structures is validated through experimental characterization.Moreover,the inherent process scalability establishes a versatile platform for creating multifunctional photonic architectures.展开更多
Sedimentation is one of the most critical environmental issues facing harbors’authorities that results in significant maintenance and dredging costs.Thus,it is essential to plan and manage the harbors in harmony with...Sedimentation is one of the most critical environmental issues facing harbors’authorities that results in significant maintenance and dredging costs.Thus,it is essential to plan and manage the harbors in harmony with both the environmental and economic aspects to support Integrated Coastal Structures Management(ICSM).Harbors’layout and the permeability of protection structures like breakwaters affect the sediment transport within harbors’basins.Using a multi-step relational research framework,this study aims to design a novel prediction model for estimating the sedimentation quantities in harbors through a comparative approach based on artificial intelligence(AI)algorithms.First,one hundred simulations for different harbor layouts and various breakwater characteristics were numerically performed using a coastal modeling system(CMS)for generating the dataset to train and validate the proposed AIbased models.Second,three AI approaches namely:Support Vector Regression(SVR),Gaussian Process Regression(GPR),and Artificial Neural Networks(ANN)were developed to predict sedimentation quantities.Third,a comparison between the developed models was conducted using quality assessment criteria to evaluate their performance and choose the best one.Fourth,a sensitivity analysis was performed to provide insights into the factors affecting sedimentation.Lastly,a decision support tool was developed to predict harbors’sedimentation quantities.Results showed that the ANN model outperforms other models with mean absolute percentage error(MAPE)equals 4%.Furthermore,sensitivity analysis demonstrated that the main breakwater inclination angle,porosity,and harbor basin width affect significantly sediment transport.This research makes a significant contribution to the management of coastal structures by developing an AI data-driven framework that is beneficial for harbors’authorities.Ultimately,the developed decision-support AI tool could be used to predict harbors’sedimentation quantities in an easy,cheap,accurate,and practical manner compared to physical modeling which is time-consuming and costly.展开更多
To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ...To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.展开更多
文摘With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.
基金supported by the National Natural Science Foundation of China(Grant No.52105577)the Natural Science Foundation of Zhejiang Province(Grant Nos.LQ22E050001 and LQ21E080007)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J088 and 2023J376)the Ningbo Yongjiang Talent Introduction Program(Grant No.2021A-137-G).
文摘The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.
文摘As it is known, the closed inexact exterior form and associated closed dual form make up a differential-geometrical structure. Such a differential-geometrical structure describes a physical structure, namely, a pseudostructure on which conservation laws are fulfilled (A closed dual form describes a pseudostructure. And a closed exterior form, as it is known, describes a conservative quantity, since the differential of closed form is equal to zero). It has been shown that closed inexact exterior forms, which describe physical structures, are obtained from the equations of mathematical physics. This process proceeds spontaneously under realization of any degrees of freedom of the material medium described. Such a process describes an emergence of physical structures and this is accompanied by an appearance of observed formations such as fluctuations, waves, turbulent pulsations and so on.
文摘To detect space gravitational waves in the extremely low-frequency band,the telescope and optic-al platform require high stability and reliability.However,the cantilevered design presents challenges,espe-cially in the glass-metal hetero-bonding process.This study focuses on the analysis and experimental re-search of the bonding layer in the integrated structure.By optimizing the structural configuration and select-ing suitable bonding processes,the reliability of the telescope system is enhanced.The research indicates that using J-133 adhesive achieves the best performance,with a bonding layer thickness of 0.30 mm and a metal substrate surface roughness of Ra 0.8.These findings significantly enhance the reliability of the optical sys-tem while minimizing potential risks.
基金supported in part by the National Natural Science Foundation of China(Nos.61201048,61107063)the National Science and Technology Major Project(No.2017-VI-001-0094).
文摘To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of 6061-T651 aluminum alloy plates with a thickness of 75 mm produced by two domestic manufacturers in China.The results indicate that both types of plates exhibit highly consistent and symmetrical M-shaped residual stress profile along the thickness direction,manifested as surface layer compression and core tension.The strain energy density across all specimens ranges from 1.27 kJ/m^(3)to 1.43 kJ/m^(3).Machining deformation simulations of an aerospace component incorporating these measured stresses showed minimal final deformation difference between the material sources,with a maximum deviation of only 0.009 mm across specimens.These findings provide critical data for material selection and deformation control in aerospace manufacturing.
基金supported by the Research Program of Jilin Province Development and Reform Commission(2024C018-6).
文摘Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.
基金financially supported by the earmarked fund for the earmarked fund for CARS(CARS-45)National Science Fund for Distinguished Young Scholars of China(32425056)+1 种基金the National Key R&D Program of China(2023YFD2400600)Sichuan Innovation Team of National Modern Agricultural Industry Technology System(SCCXTD-2024-16).
文摘Background Cetobacterium somerae,a symbiotic microorganism resident in various fish intestines,is recognized for its beneficial effects on fish gut health.However,the mechanisms underlying the effects of C.somerae on gut health remain unclear.In this experiment,we investigated the influence of C.somerae(CGMCC No.28843)on the growth performance,intestinal digestive and absorptive capacity,and intestinal structural integrity of juvenile grass carp(Ctenopharyngodon idella)and explored its potential mechanisms.Methods A cohort of 2,160 juvenile grass carp with an initial mean body weight of 11.30±0.01 g were randomly allocated into 6 treatment groups,each comprising 6 replicates(60 fish per replicate).The experimental diets were supplemented with C.somerae at graded levels of 0.00(control),0.68×10^(9),1.35×10^(9),2.04×10^(9),2.70×10^(9),and 3.40×10^(9)cells/kg feed.Following a 10-week experimental period,biological samples were collected for subsequent analyses.Results Dietary supplementation with C.somerae at 1.35×10^(9)cells/kg significantly enhanced growth performance,intestinal development,and nutrient retention rate in juvenile grass carp(P<0.05).The treatment resulted in increased intestinal acetic acid concentration and enhanced activities of digestive enzymes and brush border enzymes(P<0.05).Furthermore,it reduced intestinal permeability(P<0.05),preserved tight junctions(TJ)ultrastructural integrity,and increased the expression of TJ and adherens junctions(AJ)biomarkers at both protein and transcriptional levels(P<0.05).Mechanistically,these effects may be correlated with enhanced antioxidant capacity and coordinated modulation of the RhoA/ROCK,Sirt1,and PI3K/AKT signaling pathways.The appropriate supplementation levels,based on weight gain rate,feed conversion ratio,the activity of serum diamine oxidase and the content of lipopolysaccharide,were 1.27×10^(9),1.27×10^(9),1.34×10^(9)and 1.34×10^(9)cells/kg,respectively.Conclusions C.somerae improved intestinal digestive and absorptive capacity of juvenile grass carp,maintained intestinal structural integrity,and thus promoted their growth and development.This work demonstrates the potential of C.somerae as a probiotic for aquatic animals and provides a theoretical basis for its utilization in aquaculture.
文摘With the help of skew-symmetric differential forms, the hidden properties of the mathematical physics equations that describe discrete quantum transitions and emergence the physical structures are investigated. It is shown that the mathematical physics equations possess a unique property. They can describe discrete quantum transitions, emergence of physical structures and occurrence observed formations. However, such a property possesses only equations on which no additional conditions, namely, the conditions of integrability, are imposed. The intergrability conditions are realized from the equations themselves. Just under realization of integrability conditions double solutions to the mathematical physics equations, which describe discrete transitions and so on, are obtained. The peculiarity consists in the fact that the integrability conditions do not directly follow from the mathematical physics equations;they are realized under the description of evolutionary process. The hidden properties of differential equations were discovered when studying the integrability of differential equations of mathematical physics that depends on the consistence between the derivatives in differential equations along different directions and on the consistence of equations in the set of equations. The results of this work were obtained with the help of skew-symmetric differential forms that possess a nontraditional mathematical apparatus such as nonidentical relations, degenerate transformations and the transition from nonintegrable manifolds to integrable structures. Such results show that mathematical physics equations can describe quantum processes.
文摘The primary objective of the present literature review is to provide a constructive and systematical discussion based on the relevant development,unsolved issues,gaps,and misconceptions in the literature regarding the fields of study that are building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures.The present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management and certification of the support structures for offshore wind turbines using artificial intelligence.The main focus of the literature review centres around the intelligent risk-based life extension management of offshore wind turbine support structures.In this regard,big data analytics,advanced signal processing techniques,supervised and unsupervised machine learning methods are discussed within the structural health monitoring and condition-based maintenance planning,the development of digital twins.Furthermore,the present review discusses the critical failure mechanisms affecting the structural condition,such as high-cycle fatigue,low-cycle fatigue,fracture,ultimate strength,and corrosion,considering deterministic and probabilistic approaches.
文摘The finite element dynamic model for integrated structures containing distributed piezoelectric sensors and actuators ( S/As ) is formulated with a new piezoelectric plate bending element in this paper. The problem of active vibration control and suppression of integrated structures is investigated under constant gain negative velocity feedback control law. A general method for active vibration control and suppression of integrated structures is presented. Finally, numerical example is given to illustrate the validity of the method proposed in this paper.
基金This work was partly funded by the National Key R&D Project of China(2021YFB3400704)China State Railway Group(K2022J004 and N2023J011)China Railway Chengdu Group(CJ23018).
文摘Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.
基金National Natural Science Foundation of China (22222902, 22209062)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB150004)+1 种基金Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China (JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program (202310320066Z)。
文摘In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.
文摘This article explores the transformative potential of nanotechnology and MMs(memory metals)in enhancing the design and operation of nuclear reactors,encompassing both fission and fusion technologies.Nanotechnology,with its ability to engineer materials at the atomic scale,offers significant improvements in reactor safety,efficiency,and longevity.In fission reactors,nanomaterials enhance fuel rod integrity,optimize thermal management,and improve in-core instrumentation.Fusion reactors benefit from nanostructured materials that bolster containment and heat dissipation,addressing critical challenges in sustaining fusion reactions.The integration of SMAs(shape memory alloys),or MMs,further amplifies these advancements.These materials,characterized by their ability to revert to a pre-defined shape under thermal conditions,provide self-healing capabilities,adaptive structural components,and enhanced magnetic confinement.The synergy between nanotechnology and MMs represents a paradigm shift in nuclear reactor technology,promising a future of cleaner,more efficient,and safer nuclear energy production.This innovative approach positions the nuclear industry to meet the growing global energy demand while addressing environmental and safety concerns.
文摘Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.
基金supported by the National Natural Science Foundation of China(82174471).
文摘The three-phase Enriched Environment(EE)paradigm has been shown to promote post-stroke functional improvement,but the neuronal mechanisms are still unclear.In this study,we applied a multimodal neuroimaging protocol combining magnetic resonance imaging(MRI)and positron emission tomography(PET)to examine the effects of post-ischemic EE treatment on structural and functional neuroplasticity in the bilateral sensorimotor cortex.Rats were subjected to permanent middle cerebral artery occlusion.The motor function of the rats was examined using the DigiGait test.MRI was applied to investigate the EE-induced structural modifications of the bilateral sensorimotor cortex.[^(18)F]-fluorodeoxyglucose PET was used to detect glucose metabolism.Blood oxygen level-dependent(BOLD)-functional MRI(fMRI)was used to identify the regional brain activity and functional connectivity(FC).In addition,the expression of neuroplasticity-related signaling pathways including neurotrophic factors(BDNF/CREB),axonal guidance proteins(Robo1/Slit2),and axonal growth-inhibitory proteins(NogoA/NgR)as well as downstream proteins(RhoA/ROCK)in the bilateral sensorimotor cortex were measured by Western blots.Our results showed the three-phase EE improved the walking ability.Structural T2 mapping imaging and diffusion tensor imaging demonstrated that EE benefited structure integrity in the bilateral sensorimotor cortex.PET-MRI fused images showed improved glucose metabolism in the corresponding regions after EE intervention.Specifically,the BOLD-based amplitude of low-frequency fluctuations showed that EE increased spontaneous activity in the bilateral motor cortex and ipsilateral sensory cortex.In addition,FC results showed increased sensorimotor connectivity in the ipsilateral hemisphere and increased interhemispheric motor cortical connectivity and motor cortical-thalamic connectivity following EE intervention.In addition,a strong correlation was found between increased functional connectivity and improved motor performance of limbs.Specifically,EE regulated the expression of neuroplasticity-related signaling,involving BDNF/CREB,Slit2/Robo1,as well as the axonal growth–inhibitory pathways Nogo-A/Nogo receptor and RhoA/ROCK in the bilateral sensorimotor cortex.Our results indicated that the three-phase enriched environment paradigm enhances neuronal plasticity of the bilateral sensorimotor cortex and consequently ameliorates post-stroke gait deficits.These findings might provide some new clues for the development of EE and thus facilitate the clinical translation of EE.
基金the CRRC Zhuzhou Locomotive Co.,Ltd.and Shanghai Railway Certification(Group)Co.,Ltd.This research was funded by the Major Research Project of CRRC(No.2022CYY007 and No.2020CCA094).
文摘Purpose–The principle of infinite life design currently directs fatigue resistance strategies for metro car bodies.However,this principle might not fully account for the dynamic influence of operational loads and the inevitable presence of defects.This study aims to integrate methods of service life estimation and residual life assessment,which are based on operational loads,into the existing infinite life verification framework to further ensure the operational safety of subway trains.Design/methodology/approach–Operational loads and fatigue loading spectra were determined through the field test.The material test was conducted to investigate characteristics of the fracture toughness and the crack growth rate.The fatigue strength of the metro car body was first verified using the finite element method and Moore–Kommers–Japer diagrams.The service life was then estimated by applying the Miner rule and high-cycle fatigue curves in a modified form of the Basquin equation.Finally,the residual life was assessed utilizing a fracture assessment diagram and a fitted curve of crack growth rate adhered to the Paris formula.Findings–Neither the maximum utilization factor nor the cumulative damage exceeds the threshold value of 1.0,the metro car body could meet the design life requirement of 30 years or 6.6 million km.However,three out of five fatigue key points were significantly influenced by the operational loads,which indicates that a single fatigue strength verification cannot achieve the infinite life design objective of the metro car body.For a projected design life of 30 years,the tolerance depth is 12.2 mm,which can underscore a relatively robust damage tolerance capability.Originality/value–The influence of operational loads on fatigue life was presented by the discrepancy analysis between fatigue strength verification results and service life estimation results.The fracture properties of butt-welded joints were tested and used for the damage tolerance assessment.The damage tolerance life can be effectively related by a newly developed equation in this study.It can be a valuable tool to provide the theoretical guidance and technical support for the structural improvements and maintenance decisions of the metro car body.
基金This manuscript is supported by the National Key Research and Development Program of China(Grant No.2021YFB2601000)the National Natural Science Foundation of China(Grant Nos.52278437,52008044)+2 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ40479)the Science and Technology Innovation Program of Hunan Provincial Department of Transportation(Grant No.202236)the Changsha Outstanding Innovative Youth Training Program Project(Grant No.kq2306009).
文摘Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.
基金supported by the National Natural Science Foundation of China(Grant 62275142)Shenzhen Stable Supporting Program(Grant WDZC20231124201906001).
文摘Planar cross-scale structures encode position and posture,enabling nanometer-level accuracy and multi-scale cascaded precision,emerging as a potential sensing device for semiconductor manufacturing and inspection systems.However,the fabrication of cross-scale hybrid structures,which is the integration of structures spanning three orders of magnitude in feature dimensions(500 nm-1.5 mm)on single substrates,still faces challenges.This requires fabrication of submicron-periodic encoder arrays(reflective regions)and micron-scale non-periodic absolute code tracks(transmissive regions)while maintaining directional consistency.Herein,we demonstrate a mask-interference hybrid lithography method to generate cross-scale structures.The multi-step lithography process integrates interference lithography for fabricating subwavelength periodic structures and mask lithography for patterning millimeter and micrometer-scale non-periodic structures.Alignment marks etched on the mask enable direction consistency between structural zones.The transmissive and reflective structures are differentially processed through region-specific etching and deposition.The effectiveness of this process in realizing the fabrication of hybrid structures is validated through experimental characterization.Moreover,the inherent process scalability establishes a versatile platform for creating multifunctional photonic architectures.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2021R1A2B5B02002599).
文摘Sedimentation is one of the most critical environmental issues facing harbors’authorities that results in significant maintenance and dredging costs.Thus,it is essential to plan and manage the harbors in harmony with both the environmental and economic aspects to support Integrated Coastal Structures Management(ICSM).Harbors’layout and the permeability of protection structures like breakwaters affect the sediment transport within harbors’basins.Using a multi-step relational research framework,this study aims to design a novel prediction model for estimating the sedimentation quantities in harbors through a comparative approach based on artificial intelligence(AI)algorithms.First,one hundred simulations for different harbor layouts and various breakwater characteristics were numerically performed using a coastal modeling system(CMS)for generating the dataset to train and validate the proposed AIbased models.Second,three AI approaches namely:Support Vector Regression(SVR),Gaussian Process Regression(GPR),and Artificial Neural Networks(ANN)were developed to predict sedimentation quantities.Third,a comparison between the developed models was conducted using quality assessment criteria to evaluate their performance and choose the best one.Fourth,a sensitivity analysis was performed to provide insights into the factors affecting sedimentation.Lastly,a decision support tool was developed to predict harbors’sedimentation quantities.Results showed that the ANN model outperforms other models with mean absolute percentage error(MAPE)equals 4%.Furthermore,sensitivity analysis demonstrated that the main breakwater inclination angle,porosity,and harbor basin width affect significantly sediment transport.This research makes a significant contribution to the management of coastal structures by developing an AI data-driven framework that is beneficial for harbors’authorities.Ultimately,the developed decision-support AI tool could be used to predict harbors’sedimentation quantities in an easy,cheap,accurate,and practical manner compared to physical modeling which is time-consuming and costly.
基金supported by the National Major Science and Technology Project,China(No.J2019-Ⅳ-0007-0075)the Fundamental Research Funds for the Central Universities,China(No.JKF-20240036)。
文摘To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.