This paper proposes a linear companding transform(CT)using either a single inflection point or two inflection points to reduce the peakto-average power ratio(PAPR)in orthogonal timefrequency space(OTFS)signals.The CT ...This paper proposes a linear companding transform(CT)using either a single inflection point or two inflection points to reduce the peakto-average power ratio(PAPR)in orthogonal timefrequency space(OTFS)signals.The CT strategically compresses higher amplitudes and enhances lower amplitudes based on carefully chosen scaling factors and points of inflection.With these selected parameters,the CT effectively reduces peak power while maintaining average power,leading to a substantial decrease in PAPR.We analyze noise changes in the inverse companding transform(ICT)process.The analysis reveals that the ICT amplifies less than 20%of the total noise.A convolutional encoder and soft decision Viterbi decoding algorithm are utilized in the OTFS system to improve the detection performance.We present simulation results focusing on PAPR reduction and bit error rate(BER)performance.These results demonstrate that the CT with two inflection points outperforms both the single inflection point case and the existingμ-law companding,clipping,peak windowing,unique OTFS frame structure,selected mapping,and partial transmit sequence methods,achieving significant PAPR reduction and BER performance.展开更多
Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by ...Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.展开更多
In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla we...It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.展开更多
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn...Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.展开更多
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w...The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.展开更多
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wave...Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.展开更多
文摘This paper proposes a linear companding transform(CT)using either a single inflection point or two inflection points to reduce the peakto-average power ratio(PAPR)in orthogonal timefrequency space(OTFS)signals.The CT strategically compresses higher amplitudes and enhances lower amplitudes based on carefully chosen scaling factors and points of inflection.With these selected parameters,the CT effectively reduces peak power while maintaining average power,leading to a substantial decrease in PAPR.We analyze noise changes in the inverse companding transform(ICT)process.The analysis reveals that the ICT amplifies less than 20%of the total noise.A convolutional encoder and soft decision Viterbi decoding algorithm are utilized in the OTFS system to improve the detection performance.We present simulation results focusing on PAPR reduction and bit error rate(BER)performance.These results demonstrate that the CT with two inflection points outperforms both the single inflection point case and the existingμ-law companding,clipping,peak windowing,unique OTFS frame structure,selected mapping,and partial transmit sequence methods,achieving significant PAPR reduction and BER performance.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031013)Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2022ZDJS117).
文摘Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.
文摘In the Kigongo area of Mwanza Region,northwest Tanzania,fishmonger Neema Aisha remembers how the morning’s fresh catch would sour while she queued for the ferry,putting her business at risk.
基金financially supported by the National Natural Science Foundation of China(No.52374259)the Open Fund of the State Key Laboratory of Mineral Processing Science and Technology,China(No.BGRIMM-KJSKL-2023-11)the Major Science and Technology Projects in Yunnan Province,China(No.202302 AF080004)。
文摘It is difficult to recover chrysocolla from sulfidation flotation which is closely related to the mineral surface composition.In this study,the effects of fluoride roasting on the surface composition of chrysocolla were investigated,its impact on sulfidation flotation was explored,and the mechanisms involved in both fluoride roasting and sulfidation flotation were discussed.With CaF_(2)as the roasting reagent,Na_(2)S·9H_(2)O as the sulfidation reagent,and sodium butyl xanthate(NaBX)as the collector,the results of the flotation experiments showed that fluoride roasting improved the floatability of chrysocolla,and the recovery rate increased from 16.87%to 82.74%.X-ray diffraction analysis revealed that after fluoride roasting,approximately all the Cu on the chrysocolla surface was exposed in the form of CuO,which could provide a basis for subsequent sulfidation flotation.The microscopy and elemental analyses revealed that large quantities of"pagoda-like"grains were observed on the sulfidation surface of the fluoride-roasted chrysocolla,indicating high crystallinity particles of copper sulfide.This suggests that the effect of sulfide formation on the chrysocolla surface was more pronounced.X-ray photoelectron spectroscopy revealed that fluoride roasting increased the relative contents of sulfur and copper on the surface and that both the Cu~+and polysulfide fractions on the surface of the minerals increased.This enhances the effect of sulfidation,which is conducive to flotation recovery.Therefore,fluoride roasting improved the effect of copper species transformation and sulfidation on the surface of chysocolla,promoted the adsorption of collectors,and improved the recovery of chrysocolla from sulfidation flotation.
基金supported by NIH grants,Nos.R01NS125074,R01AG083164,R01NS107365,and R21NS127177(to YL),1F31NS129204-01A1(to KW)and Albert Ryan Fellowship(to KW).
文摘Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.
文摘The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
基金sponsored by National Science and Technology Major Project of China (No. 2008 ZX 05009-001)
文摘Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.