We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_(2)Te_(3) heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_(2)Te_(3) is a three-dimensional topological insul...We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_(2)Te_(3) heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_(2)Te_(3) is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e^(2)/h at temperature T=1.6 K and magnetic field _(μ0)H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.展开更多
We should add the following acknowledge:Jing Teng thanks the support from the Youth Innovation Promotion Association Project,Chinese Academy of Sciences.
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica...Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.展开更多
Ferroelectric topological insulators realized in heterostructures of two topologically trivial two-dimensional materials have recently attracted significant interest. Using first-principles calculations combined with ...Ferroelectric topological insulators realized in heterostructures of two topologically trivial two-dimensional materials have recently attracted significant interest. Using first-principles calculations combined with topological quantum chemistry, we investigate bilayer α-In_(2) Se_(3)(2 L-In_(2) Se_(3)) in van der Waals heterostructures with XSe(X = Ga, In, Tl) substrates within space group P 3m1(No. 156). We show that the emergence of ferroelectricity-driven topological phase transitions in these systems is dictated by fundamental symmetry principles rather than material-specific effects. The band bending at the XSe/2 L-In_(2) Se_(3) interface enables topological band inversions, with higher-electron-affinity substrates such as GaSe and TlSe favoring the transition. Remarkably, GaSe/2 L-In_(2) Se_(3) exhibits a reversible transition between topological and trivial insulating phases upon polarization switching, while TlSe/2 L-In_(2) Se_(3) undergoes sequential transitions from a topological insulator to a trivial insulator and eventually to a metallic state. This multistate manipulation highlights a viable route for designing tunable, low-power, multi-functional electronic devices.展开更多
Topological insulators represent a new phase of matter,characterized by conductive surfaces,while their bulk remains insulating.When the dimension of the system exceeds that of the topological state by at least two,th...Topological insulators represent a new phase of matter,characterized by conductive surfaces,while their bulk remains insulating.When the dimension of the system exceeds that of the topological state by at least two,the insulators are classified as higher-order topological insulators(HOTI).The appearance of higher-order topological states,such as corner states,can be explained by the filling anomaly,which leads to the fractional spectral charges in the unit cell.Previously reported fractional charges have been quite limited in number and size.In this work,based on the two-dimensional(2D)Su-Schrieffer-Heeger model lattice,we demonstrated a new class of HOTIs with adjustable fractional charges that can take any value ranging from 0 to 1,achieved by utilizing the Lorentz transformation.Furthermore,this transformation generates novel bound-state-in-continuum-like corner states,even when the lattice is in a topological trivial phase,offering a new approach to light beam localization.This work paves the way for fabricating HOTIs with diverse corner states that offer promising applicative potential.展开更多
The exploration of topological phases remains a cutting-edge research frontier,driven by their promising potential for next-generation electronic and quantum technologies.In this work,we employ first-principles calcul...The exploration of topological phases remains a cutting-edge research frontier,driven by their promising potential for next-generation electronic and quantum technologies.In this work,we employ first-principles calculations and tightbinding modeling to systematically investigate the topological properties of freestanding two-dimensional(2D)honeycomb Bi,HgTe,and Al_(2)O_(3)(0001)-supported HgTe.Remarkably,all three systems exhibit coexistence of intrinsic first-and higher-order topological insulator states,induced by spin-orbit coupling(SOC).These states manifest as topologically protected gapless edge states in one-dimensional(1D)nanoribbons and symmetry-related corner states in zero-dimensional(0D)nanoflakes.Furthermore,fractional electron charges may accumulate at the corners of armchair-edged nanoflakes.Among these materials,HgTe/Al_(2)O_(3)(0001)is particularly promising due to its experimentally feasible atomic configuration and low-energy corner states.Our findings highlight the importance of exploring higher-order topological phases in quantum spin Hall insulators and pave the way for new possibilities in device applications.展开更多
We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from in...We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.展开更多
In this investigation,we delve into the interplay between strong interactions and intricate topological configurations,leading to emergent quantum states such as magnetic topological insulators.The crux of our researc...In this investigation,we delve into the interplay between strong interactions and intricate topological configurations,leading to emergent quantum states such as magnetic topological insulators.The crux of our research centers on elucidating how lattice symmetry modulates antiferromagnetic quantum Hall phenomena.Utilizing the spinful Harper-Hofstadter model enriched with a next-nearest-neighbor(NNN)hopping term,we discern a half-filling bandgap,paving the way for the manifestation of a quantum Hall insulator characterized by a Chern number,C=2.Upon integrating a checkerboardpatterned staggered potential(△)and the Hubbard interaction(U),the system exhibits complex dynamical behaviors.Marginal NNN hopping culminates in a Ne′el antiferromagnetic Mott insulator.In contrast,intensified hopping results in stripe antiferromagnetic configurations.Moreover,in the regime of limited NNN hopping,a C=1 Ne′el antiferromagnetic quantum Hall insulator emerges.A salient observation pertains to the manifestation of a C=1 antiferromagnetic quantum Hall insulator when spin-flip mechanisms are not offset by space group symmetries.These findings chart a pathway for further explorations into antiferromagnetic Quantum Hall States.展开更多
In recent years,the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics.We demonstrate that twisted bilayer graphene with sma...In recent years,the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics.We demonstrate that twisted bilayer graphene with small twist angles behaves as a second-order topological insulator possessing topological corner charges.Using a tight-binding model,we compute the topological band indices and corner states of finite-sized twisted bilayer graphene flakes.It is found that for any small twist angle,whether commensurate or incommensurate,the gaps both below and above the flat bands are associated with nontrivial topological indices.Our results not only extend the concept of second-order band topology to arbitrary small twist angles but also confirm the existence of corner states at acute-angle corners.展开更多
The thickness dependence of linearly polarized light-induced momentum anisotropy and the inverse spin Hall effect(PISHE)in topological insulator(TI)Bi_(2)Te_(3)films has been investigated.A significant enhancement of ...The thickness dependence of linearly polarized light-induced momentum anisotropy and the inverse spin Hall effect(PISHE)in topological insulator(TI)Bi_(2)Te_(3)films has been investigated.A significant enhancement of the PISHE signal is observed in the 12-quintuple-layer(QL)Bi_(2)Te_(3)film compared with that of the 3-and 5-QL samples,whereas a minimal value of photoinduced momentum anisotropy is found in the 12-QL sample.The photoinduced momentum anisotropy and the PISHE in Bi_(2)Te_(3)films are more than three and two orders of magnitude larger than those in Bi2Se3 films grown on SrTiO_(3)substrates,respectively.The 3-QL sample exhibits a sinusoidal dependence of the PISHE current on the light spot position,while the 5-QL and 12-QL samples show aW-shaped dependence,which arises from the different angles between the coordinate axis x and the in-plane crystallographic axis of the Bi_(2)Te_(3)films.Our findings demonstrate the critical role of film thickness in modulating both the photoinduced momentum anisotropy and the PISHE current,thereby suggesting a thickness-engineering strategy for designing novel optoelectronic devices based on TIs.展开更多
We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency opti...We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.展开更多
Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investig...Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.展开更多
By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surfac...By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.展开更多
Two-dimensional(2D)topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics.Achieving various topologica...Two-dimensional(2D)topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics.Achieving various topological states within one type of materials is,however,seldom reported.Based on first-principles calculations and tightbinding models,we investigate topological electronic states in a novel family of 2D halogenated tetragonal stanene(T-SnX,X=F,Cl,Br,I).All the four monolayers are found to be unusual topological nodal-line semimetals(NLSs),protected by a glide mirror symmetry.When spin-orbit coupling(SOC)is turned on,T-SnF and TSnCl are still ascertained as topological NLSs due to the remaining band inversion,primarily composed of Sn pxy orbitals,while T-Sn Br and T-SnI become quantum spin Hall insulators.The phase transition is ascribed to moving up in energy of Sn s orbitals and increasing of SOC strengths.The topology origin in the materials is uniformly rationalized through elementary band representations.The robust and diverse topological states found in the 2D T-SnX monolayers position them as an excellent material platform for development of innovative topological electronics.展开更多
Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)top...Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.展开更多
We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. O...We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii–Moriya(DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy εF. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.展开更多
Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opport...Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.展开更多
The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattic...The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.展开更多
Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in ...Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in which an additive integer like the winding or Chern number is endowed separately with each(degenerate group of)energy band(s).In this work,we reveal that Floquet(time-periodic)driving could not only enrich the topology and phase transitions of non-Abelian topological matter,but also induce bulk-edge correspondence unique to nonequilibrium setups.Using a one-dimensional,three-band model as an illustrative example,we demonstrate that Floquet driving could reshuffle the phase diagram of the non-driven system,yielding both gapped and gapless Floquet band structures with non-Abelian topological charges.Moreover,by dynamically tuning the anomalous Floquet π-quasienergy gap,non-Abelian topological transitions inaccessible to static systems could arise,leading to much more complicated relations between non-Abelian topological charges and Floquet edge states.These discoveries put forth periodic driving as a powerful scheme of engineering non-Abelian topological phases and incubating unique non-Abelian band topology beyond equilibrium.展开更多
Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quant...Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quantum anomalous Hall efect(QAHE)at zero magnetic feld.In this study,we propose a scheme to utilize capped sliding van der Waals materials to efectively modulate the magnetic and topological properties of MnBi_(2)Te_(4).Our results demonstrate that the h-BN/MnBi_(2)Te_(4)/h-BN heterostructure,constructed by sliding ferroelectric h-BN bilayer and MnBi_(2)Te_(4),not only realizes a transition from interlayer antiferromagnetic to ferromagnetic coupling but also signifcantly enhances the out-of-plane magnetism and air stability of MnBi_(2)Te_(4).Moreover,the above magnetic properties can be further improved by tuning the interlayer distance between h-BN and MnBi_(2)Te_(4).Additionally,the obtained band structures and topological properties clearly support that the h-BN/MnBi_(2)Te_(4)/hBN heterostructure can harbor the QAHE with a Chern number of C=1.This work provides a new and nonvolatile modulation approach to achieve high-temperature and high-precision QAHE at zero magnetic feld.展开更多
基金Supported by the National Key Research and Development Program of China (Grant No.2016YFA0300600)the National Natural Science Foundation of China (Grant No.11961141011)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report an experimental study of electron transport properties of MnSe/(Bi,Sb)_(2)Te_(3) heterostructures,in which MnSe is an antiferromagnetic insulator,and(Bi,Sb)_(2)Te_(3) is a three-dimensional topological insulator(TI).Strong magnetic proximity effect is manifested in the measurements of the Hall effect and longitudinal resistances.Our analysis shows that the gate voltage can substantially modify the anomalous Hall conductance,which exceeds 0.1 e^(2)/h at temperature T=1.6 K and magnetic field _(μ0)H=5 T,even though only the top TI surface is in proximity to MnSe.This work suggests that heterostructures based on antiferromagnetic insulators provide a promising platform for investigating a wide range of topological spintronic phenomena.
文摘We should add the following acknowledge:Jing Teng thanks the support from the Youth Innovation Promotion Association Project,Chinese Academy of Sciences.
基金supported by the National Natu-ral Science Foundation of China(Grants No.12174220 and No.12074217)the Shandong Provincial Science Foundation for Excellent Young Scholars(Grant No.ZR2023YQ001)+1 种基金the Taishan Young Scholar Program of Shandong Provincethe Qilu Young Scholar Pro-gram of Shandong University.
文摘Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.
基金supported by the National Natural Science Foundation of China (Grant Nos.11874141,12174059,and 11604134)。
文摘Ferroelectric topological insulators realized in heterostructures of two topologically trivial two-dimensional materials have recently attracted significant interest. Using first-principles calculations combined with topological quantum chemistry, we investigate bilayer α-In_(2) Se_(3)(2 L-In_(2) Se_(3)) in van der Waals heterostructures with XSe(X = Ga, In, Tl) substrates within space group P 3m1(No. 156). We show that the emergence of ferroelectricity-driven topological phase transitions in these systems is dictated by fundamental symmetry principles rather than material-specific effects. The band bending at the XSe/2 L-In_(2) Se_(3) interface enables topological band inversions, with higher-electron-affinity substrates such as GaSe and TlSe favoring the transition. Remarkably, GaSe/2 L-In_(2) Se_(3) exhibits a reversible transition between topological and trivial insulating phases upon polarization switching, while TlSe/2 L-In_(2) Se_(3) undergoes sequential transitions from a topological insulator to a trivial insulator and eventually to a metallic state. This multistate manipulation highlights a viable route for designing tunable, low-power, multi-functional electronic devices.
基金supported by the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-JCQN-06)the National Natural Science Foundation of China(Nos.12474337,12304370)Fundamental Research Funds for the Central Universities(No.xzy012024135).
文摘Topological insulators represent a new phase of matter,characterized by conductive surfaces,while their bulk remains insulating.When the dimension of the system exceeds that of the topological state by at least two,the insulators are classified as higher-order topological insulators(HOTI).The appearance of higher-order topological states,such as corner states,can be explained by the filling anomaly,which leads to the fractional spectral charges in the unit cell.Previously reported fractional charges have been quite limited in number and size.In this work,based on the two-dimensional(2D)Su-Schrieffer-Heeger model lattice,we demonstrated a new class of HOTIs with adjustable fractional charges that can take any value ranging from 0 to 1,achieved by utilizing the Lorentz transformation.Furthermore,this transformation generates novel bound-state-in-continuum-like corner states,even when the lattice is in a topological trivial phase,offering a new approach to light beam localization.This work paves the way for fabricating HOTIs with diverse corner states that offer promising applicative potential.
基金supported by the Program for Science and Technology Innovation Team in Zhejiang Province,China(Grant No.2021R01004)the Six Talent Peaks Project of Jiangsu Province,China(Grant No.2019-XCL-081)the Startup Funding of Ningbo University and Yongjiang Recruitment Project(Grant No.432200942).
文摘The exploration of topological phases remains a cutting-edge research frontier,driven by their promising potential for next-generation electronic and quantum technologies.In this work,we employ first-principles calculations and tightbinding modeling to systematically investigate the topological properties of freestanding two-dimensional(2D)honeycomb Bi,HgTe,and Al_(2)O_(3)(0001)-supported HgTe.Remarkably,all three systems exhibit coexistence of intrinsic first-and higher-order topological insulator states,induced by spin-orbit coupling(SOC).These states manifest as topologically protected gapless edge states in one-dimensional(1D)nanoribbons and symmetry-related corner states in zero-dimensional(0D)nanoflakes.Furthermore,fractional electron charges may accumulate at the corners of armchair-edged nanoflakes.Among these materials,HgTe/Al_(2)O_(3)(0001)is particularly promising due to its experimentally feasible atomic configuration and low-energy corner states.Our findings highlight the importance of exploring higher-order topological phases in quantum spin Hall insulators and pave the way for new possibilities in device applications.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1402100)the National Natural Science Foundation of China (Grant Nos. 12174461, 12234012, 12334012, and 52327808)。
文摘We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.
文摘In this investigation,we delve into the interplay between strong interactions and intricate topological configurations,leading to emergent quantum states such as magnetic topological insulators.The crux of our research centers on elucidating how lattice symmetry modulates antiferromagnetic quantum Hall phenomena.Utilizing the spinful Harper-Hofstadter model enriched with a next-nearest-neighbor(NNN)hopping term,we discern a half-filling bandgap,paving the way for the manifestation of a quantum Hall insulator characterized by a Chern number,C=2.Upon integrating a checkerboardpatterned staggered potential(△)and the Hubbard interaction(U),the system exhibits complex dynamical behaviors.Marginal NNN hopping culminates in a Ne′el antiferromagnetic Mott insulator.In contrast,intensified hopping results in stripe antiferromagnetic configurations.Moreover,in the regime of limited NNN hopping,a C=1 Ne′el antiferromagnetic quantum Hall insulator emerges.A salient observation pertains to the manifestation of a C=1 antiferromagnetic quantum Hall insulator when spin-flip mechanisms are not offset by space group symmetries.These findings chart a pathway for further explorations into antiferromagnetic Quantum Hall States.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104232 and 12074156).
文摘In recent years,the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics.We demonstrate that twisted bilayer graphene with small twist angles behaves as a second-order topological insulator possessing topological corner charges.Using a tight-binding model,we compute the topological band indices and corner states of finite-sized twisted bilayer graphene flakes.It is found that for any small twist angle,whether commensurate or incommensurate,the gaps both below and above the flat bands are associated with nontrivial topological indices.Our results not only extend the concept of second-order band topology to arbitrary small twist angles but also confirm the existence of corner states at acute-angle corners.
基金supported by the National Natural Science Foundation of China(Grant Nos.62074036,61674038,and 11574302)the Foreign Cooperation Project of Fujian Province,China(Grant No.2023I0005)+2 种基金the Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics(Grant No.KF202108)the National Key Research and Development Program of China(Grant No.2016YFB0402303)the Foundation of the Fujian Provincial Department of Industry and Information Technology of China(Grant No.82318075).
文摘The thickness dependence of linearly polarized light-induced momentum anisotropy and the inverse spin Hall effect(PISHE)in topological insulator(TI)Bi_(2)Te_(3)films has been investigated.A significant enhancement of the PISHE signal is observed in the 12-quintuple-layer(QL)Bi_(2)Te_(3)film compared with that of the 3-and 5-QL samples,whereas a minimal value of photoinduced momentum anisotropy is found in the 12-QL sample.The photoinduced momentum anisotropy and the PISHE in Bi_(2)Te_(3)films are more than three and two orders of magnitude larger than those in Bi2Se3 films grown on SrTiO_(3)substrates,respectively.The 3-QL sample exhibits a sinusoidal dependence of the PISHE current on the light spot position,while the 5-QL and 12-QL samples show aW-shaped dependence,which arises from the different angles between the coordinate axis x and the in-plane crystallographic axis of the Bi_(2)Te_(3)films.Our findings demonstrate the critical role of film thickness in modulating both the photoinduced momentum anisotropy and the PISHE current,thereby suggesting a thickness-engineering strategy for designing novel optoelectronic devices based on TIs.
基金Project supported by the the National Natural Science Foundation of China (Grant No.12274442)the National Key R&D Program of China (Grant No.2022YFA1403901)。
文摘We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7.
基金the support of the National Natural Science Foundation of China (Grant No.12304195)the Chutian Scholars Program in Hubei Province+3 种基金supported by the National Natural Science Foundation of China (Grant No.12074107)the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province (Grant No.T2020001)the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012)supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342)。
文摘Disorder effects on topological materials in integer dimensions have been extensively explored in recent years. However, its influence on topological systems in fractional dimensions remains unclear. Here, we investigate the disorder effects on a fractal system constructed on the Sierpiński lattice in fractional dimensions. The system supports the second-order topological insulator phase characterized by a quantized quadrupole moment and the normal insulator phase. We find that the second-order topological insulator phase on the Sierpiński lattice is robust against weak disorder but suppressed by strong disorder. Most interestingly, we find that disorder can transform the normal insulator phase to the second-order topological insulator phase with an emergent quantized quadrupole moment. Finally, the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distributions.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.12104148)the Fundamental Research Funds for the Central Universities(Grant No.531118010565).
文摘By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174059,11874117,11904101,and 11604134)the Natural Science Foundation of Shanghai(Grant No.21ZR140820)。
文摘Two-dimensional(2D)topological materials have recently garnered significant interest due to their profound physical properties and promising applications for future quantum nanoelectronics.Achieving various topological states within one type of materials is,however,seldom reported.Based on first-principles calculations and tightbinding models,we investigate topological electronic states in a novel family of 2D halogenated tetragonal stanene(T-SnX,X=F,Cl,Br,I).All the four monolayers are found to be unusual topological nodal-line semimetals(NLSs),protected by a glide mirror symmetry.When spin-orbit coupling(SOC)is turned on,T-SnF and TSnCl are still ascertained as topological NLSs due to the remaining band inversion,primarily composed of Sn pxy orbitals,while T-Sn Br and T-SnI become quantum spin Hall insulators.The phase transition is ascribed to moving up in energy of Sn s orbitals and increasing of SOC strengths.The topology origin in the materials is uniformly rationalized through elementary band representations.The robust and diverse topological states found in the 2D T-SnX monolayers position them as an excellent material platform for development of innovative topological electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074107 and 12304195)the Program of Outstanding Young and Middle-Aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(Grant No.T2020001)+2 种基金the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2022CFA012)the Chutian Scholars Program in Hubei Province,the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230751)the Postdoctoral Innovation Research Program in Hubei Province(Grant No.351342)。
文摘Floquet engineering has attracted considerable attention as a promising approach for tuning topological phase transitions.We investigate the effects of high-frequency time-periodic driving in a four-dimensional(4D)topological insulator,focusing on topological phase transitions at the off-resonant quasienergy gap.The 4D topological insulator hosts gapless three-dimensional boundary states,characterized by the second Chern number C_(2).We demonstrate that the second Chern number of 4D topological insulators can be modulated by tuning the amplitude of time-periodic driving.This includes transitions from a topological phase with C_(2)=±3 to another topological phase with C_(2)=±1,or to a topological phase with an even second Chern number C_(2)=±2,which is absent in the 4D static system.Finally,the approximation theory in the high-frequency limit further confirms the numerical conclusions.
基金supported by the research foundation of Institute for Advanced Sciences of CQUPT(Grant No.E011A2022328)。
文摘We theoretically investigate the Ruderman–Kittel–Kasuya–Yosida(RKKY) interaction in helical higher-order topological insulators(HOTIs), revealing distinct behaviors mediated by hinge and Dirac-type bulk carriers. Our findings show that hinge-mediated interactions consist of Heisenberg, Ising, and Dzyaloshinskii–Moriya(DM) terms, exhibiting a decay with impurity spacing z and oscillations with Fermi energy εF. These interactions demonstrate ferromagnetic behaviors for the Heisenberg and Ising terms and alternating behavior for the DM term. In contrast, bulk-mediated interactions include Heisenberg, twisted Ising, and DM terms, with a conventional cubic oscillating decay. This study highlights the nuanced interplay between hinge and bulk RKKY interactions in HOTIs, offering insights into designs of next-generation quantum devices based on HOTIs.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA140850,2022YFA1403601,and 2023YFC2410501)the National Natural Science Foundation of China(Grants Nos.12241402,12474059,12274203,12374113,and 12274204)。
文摘Higher-order topological insulators,which host topologically protected states at boundaries that are at least two dimensions lower than the bulk,are an emerging class of topological materials.They provide great opportunities for exploring novel topological phenomena and fascinating applications.Utilizing a low-temperature scanning tunneling microscope,we construct breathing-kagome lattices with Fe adatoms on Ag(111)and investigate their electronic properties.We observe the higher-order topological boundary states in the topological phase but not in the trivial one,which is consistent with the theory.These states are found to be robust against the removal of bulk or edge adatoms.Further,we show the arbitrary positioning of these states either at corner,edge,or bulk sites by slightly modifying their neighbors.Our study not only demonstrates the formation and robustness of the electronic higher-order topological boundary states in real atomic systems but also provides a route for controlling their positions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074101 and 11604081)sponsored by the Natural Science Foundation of Henan Province, China (Grant No. 212300410040)。
文摘The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.
基金supported by the National Natural Science Foundation of China(Grant Nos.12275260 and 11905211)the Fundamental Research Funds for the Central Universities(Grant No.202364008)the Young Talents Project of Ocean University of China。
文摘Non-Abelian topological insulators are characterized by matrix-valued,non-commuting topological charges with regard to more than one energy gap.Their descriptions go beyond the conventional topological band theory,in which an additive integer like the winding or Chern number is endowed separately with each(degenerate group of)energy band(s).In this work,we reveal that Floquet(time-periodic)driving could not only enrich the topology and phase transitions of non-Abelian topological matter,but also induce bulk-edge correspondence unique to nonequilibrium setups.Using a one-dimensional,three-band model as an illustrative example,we demonstrate that Floquet driving could reshuffle the phase diagram of the non-driven system,yielding both gapped and gapless Floquet band structures with non-Abelian topological charges.Moreover,by dynamically tuning the anomalous Floquet π-quasienergy gap,non-Abelian topological transitions inaccessible to static systems could arise,leading to much more complicated relations between non-Abelian topological charges and Floquet edge states.These discoveries put forth periodic driving as a powerful scheme of engineering non-Abelian topological phases and incubating unique non-Abelian band topology beyond equilibrium.
基金supported by the National Key R&D Program of China(Grant No.2024YFA1408103)National Natural Science Foundation of China(Grants No.11974098,12474158,12234017 and 12488101)+3 种基金Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302800)Natural Science Foundation of Hebei Province(Grant No.A202305017)Anhui Initiative in Quantum Information Technologies(Grant No.AHY170000)Fundamental Research Funds for the Central Universities(Grant No.WK2340000082)。
文摘Interlayer antiferromagnetic coupling,small magnetic anisotropy,and low air stability of the intrinsic magnetic topological insulator MnBi_(2)Te_(4)have been critical bottlenecks to the future application of the quantum anomalous Hall efect(QAHE)at zero magnetic feld.In this study,we propose a scheme to utilize capped sliding van der Waals materials to efectively modulate the magnetic and topological properties of MnBi_(2)Te_(4).Our results demonstrate that the h-BN/MnBi_(2)Te_(4)/h-BN heterostructure,constructed by sliding ferroelectric h-BN bilayer and MnBi_(2)Te_(4),not only realizes a transition from interlayer antiferromagnetic to ferromagnetic coupling but also signifcantly enhances the out-of-plane magnetism and air stability of MnBi_(2)Te_(4).Moreover,the above magnetic properties can be further improved by tuning the interlayer distance between h-BN and MnBi_(2)Te_(4).Additionally,the obtained band structures and topological properties clearly support that the h-BN/MnBi_(2)Te_(4)/hBN heterostructure can harbor the QAHE with a Chern number of C=1.This work provides a new and nonvolatile modulation approach to achieve high-temperature and high-precision QAHE at zero magnetic feld.