Inspired by nature's self-similar designs,novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications.The energy absorption is e...Inspired by nature's self-similar designs,novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications.The energy absorption is enhanced by optimizing the geometry and topology for a given mass.The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures.The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact.Furthermore,the influence of thickness,radial connectivity,and order of patterning at the unit cell level are also investigated.The maximum crushing efficiency attained is found to be more than 95%,which is significantly higher than most existing traditional designs.Later on,the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures.Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum.The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure.Moreover,in order to avoid layer-wise weak zones and hence,attain a uniform out-of-plane impact strength,off-setting the designs in each stage is proposed.The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s,respectively.展开更多
Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated,but it remains a major challenge....Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated,but it remains a major challenge.Herein,inspired by the human muscle,an anisotropic fire safety aerogel(ACMCA)with precise self-actuated temperature monitoring performance is developed by combining aramid nanofibers with eicosane/MXene to form an anisotropically oriented conductive network.By combining the two synergies of the negative temperaturedependent thermal conductive eicosane,which induces a high-temperature differential,and directionally ordered MXene that establishes a conductive network along the directional freezing direction.The resultant ACMCA exhibited remarkable thermoelectric properties,with S values reaching 46.78μV K^(−1)andκvalues as low as 0.048 W m^(−1)K^(−1)at room temperature.Moreover,the prepared anisotropic aerogel ACMCA exhibited electrical responsiveness to temperature variations,facilitating its application in intelligent temperature monitoring systems.The designed anisotropic aerogel ACMCA could be incorporated into the firefighting clothing as a thermal barrier layer,demonstrating a wide temperature sensing range(50-400℃)and a rapid response time for early high-temperature alerts(~1.43 s).This work provides novel insights into the design and application of temperature-sensitive anisotropic aramid nanofibers aerogel in firefighting clothing.展开更多
1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enab...1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enabling precise target identification and tracking.To a certain extent,the all-weather adaptability of IRIMs enables their effective operation across diverse environmental conditions,providing high targeting accuracy and cost efficiency.展开更多
Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and...Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and stable long-term cycling performance are essential.These essential aspects create a need for superior cathode materials,which represents a substantial challenge.In this study,we used MXenes as a framework for NH_(4)V_(4)O_(10)(NVO)construction and developed electrodes that combined the high capacity of NVO with the excellent conductivity of MXene/carbon nanofibers(MCNFs).We explored the electrochemical characteristics of electrodes with varying NVO contents.Considering the distinctive layered structure of NVO,the outstanding conductivity of MCNFs,and the strong synergies between the two components.NVO-MCNFs exhibited better charge transfer compared with earlier materials,as well as more ion storage sites,excellent conductivity,and short ion diffusion pathways.A composite electrode with optimized NVO content exhibited an excellent specific capacitance of 360.6mAh g^(-1) at 0.5 A g^(-1) and an outstanding rate performance.In particular,even at a high current density of 10 A g^(-1),the 32NVO-MCNF exhibited impressive cycling stability:88.6%over 2500 cycles.The mechanism involved was discovered via comprehensive characterization.We expect that the fabricated nanofibers will be useful in energy storage and conversion systems.展开更多
Travel is not just about seeing new places;it's about seeing the world through new eyes.It's an opportunity to learn,to grow and to be inspired.This enlightening journey begins the moment we step out of our co...Travel is not just about seeing new places;it's about seeing the world through new eyes.It's an opportunity to learn,to grow and to be inspired.This enlightening journey begins the moment we step out of our comfort zones.展开更多
In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vert...In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.展开更多
Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algori...Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.展开更多
Triboelectric nanogenerators(TENGs)stand at the forefront of energy harvesting innovation,transforming mechanical energy into electrical power through triboelectrification and electrostatic induction.This groundbreaki...Triboelectric nanogenerators(TENGs)stand at the forefront of energy harvesting innovation,transforming mechanical energy into electrical power through triboelectrification and electrostatic induction.This groundbreaking technology addresses the urgent need for sustainable and renewable energy solutions,opening new avenues for self-powered systems.Despite their potential,TENGs face challenges such as material optimization for enhanced triboelectric effects,scalability,and improving conversion efficiency under varied conditions.Durability and environmental stability also pose significant hurdles,necessitating further research towards more resilient systems.Nature inspired TENG designs offer promising solutions by emulating biological processes and structures,such as the energy mechanisms of plants and the textured surfaces of animal skins.This biomimetic approach has led to notable improvements in material properties,structural designs,and overall TENG performance,including enhanced energy conversion efficiency and environmental robustness.The exploration into bio-inspired TENGs has unlocked new possibilities in energy harvesting,self-powered sensing,and wearable electronics,emphasizing reduced energy consumption and increased efficiency through innovative design.This review encapsulates the challenges and advancements in nature inspired TENGs,highlighting the integration of biomimetic principles to overcome current limitations.By focusing on augmented electrical properties,biodegradability,and self-healing capabilities,nature inspired TENGs pave the way for more sustainable and versatile energy solutions.展开更多
Obstructive sleep apnea (OSA) is a prevalent condition marked by repetitive pharyngeal collapse during sleep, often treated with continuous positive airway pressure (CPAP). However, CPAP compliance remains suboptimal,...Obstructive sleep apnea (OSA) is a prevalent condition marked by repetitive pharyngeal collapse during sleep, often treated with continuous positive airway pressure (CPAP). However, CPAP compliance remains suboptimal, leading to alternative treatments like the Inspire implant, which stimulates the hypoglossal nerve to maintain airway patency. This case report discusses a 75-year-old male with OSA and CPAP intolerance, successfully treated with the Inspire implant. Postoperative imaging confirmed the proper placement of the device, and the patient reported significant improvements in symptoms. This case highlights the expected radiographic findings of the device.展开更多
基金the Science and Engineering Research Board(SERB),Department of Science and Technology,India,for funding this research through grant number SRG/2019/001581。
文摘Inspired by nature's self-similar designs,novel honeycomb-spiderweb based self-similar hybrid cellular structures are proposed here for efficient energy absorption in impact applications.The energy absorption is enhanced by optimizing the geometry and topology for a given mass.The proposed hybrid cellular structure is arrived after a thorough analysis of topologically enhanced self-similar structures.The optimized cell designs are rigorously tested considering dynamic loads involving crush and high-velocity bullet impact.Furthermore,the influence of thickness,radial connectivity,and order of patterning at the unit cell level are also investigated.The maximum crushing efficiency attained is found to be more than 95%,which is significantly higher than most existing traditional designs.Later on,the first and second-order hierarchical self-similar unit cell designs developed during crush analysis are used to prepare the cores for sandwich structures.Impact tests are performed on the developed sandwich structures using the standard 9-mm parabellum.The influence of multistaging on impact resistance is also investigated by maintaining a constant total thickness and mass of the sandwich structure.Moreover,in order to avoid layer-wise weak zones and hence,attain a uniform out-of-plane impact strength,off-setting the designs in each stage is proposed.The sandwich structures with first and second-order self-similar hybrid cores are observed to withstand impact velocities as high as 170 m/s and 270 m/s,respectively.
基金funding support from Guiding Project of Scientific Research Plan of Education Department of Hubei Province and Wuhan Textile University School Fund(B)(k24016).
文摘Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated,but it remains a major challenge.Herein,inspired by the human muscle,an anisotropic fire safety aerogel(ACMCA)with precise self-actuated temperature monitoring performance is developed by combining aramid nanofibers with eicosane/MXene to form an anisotropically oriented conductive network.By combining the two synergies of the negative temperaturedependent thermal conductive eicosane,which induces a high-temperature differential,and directionally ordered MXene that establishes a conductive network along the directional freezing direction.The resultant ACMCA exhibited remarkable thermoelectric properties,with S values reaching 46.78μV K^(−1)andκvalues as low as 0.048 W m^(−1)K^(−1)at room temperature.Moreover,the prepared anisotropic aerogel ACMCA exhibited electrical responsiveness to temperature variations,facilitating its application in intelligent temperature monitoring systems.The designed anisotropic aerogel ACMCA could be incorporated into the firefighting clothing as a thermal barrier layer,demonstrating a wide temperature sensing range(50-400℃)and a rapid response time for early high-temperature alerts(~1.43 s).This work provides novel insights into the design and application of temperature-sensitive anisotropic aramid nanofibers aerogel in firefighting clothing.
基金co-supported by the China Postdoctoral Science Foundation(No.2024M754304)the Hunan Provincial Natural Science Foundation of China(No.2025JJ60072)。
文摘1.Introduction Infrared Imaging Missiles(IRIMs)are advanced weapons utilizing infrared technology for target detection and tracking.Their sensors capture thermal signatures and convert them into electronic images,enabling precise target identification and tracking.To a certain extent,the all-weather adaptability of IRIMs enables their effective operation across diverse environmental conditions,providing high targeting accuracy and cost efficiency.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(Nos.RS-2023-00217581 and RS-2023-00304768)the National Research Council of Science&Technology(NST)grant by the Korean Government(MSIT)(No.CAP 22073-000).
文摘Aqueous zinc-ion batteries(AZIBs)have emerged as promising,practical energy storage devices based on their non-toxic nature,environmental friendliness,and high energy density.However,excellent rate characteristics and stable long-term cycling performance are essential.These essential aspects create a need for superior cathode materials,which represents a substantial challenge.In this study,we used MXenes as a framework for NH_(4)V_(4)O_(10)(NVO)construction and developed electrodes that combined the high capacity of NVO with the excellent conductivity of MXene/carbon nanofibers(MCNFs).We explored the electrochemical characteristics of electrodes with varying NVO contents.Considering the distinctive layered structure of NVO,the outstanding conductivity of MCNFs,and the strong synergies between the two components.NVO-MCNFs exhibited better charge transfer compared with earlier materials,as well as more ion storage sites,excellent conductivity,and short ion diffusion pathways.A composite electrode with optimized NVO content exhibited an excellent specific capacitance of 360.6mAh g^(-1) at 0.5 A g^(-1) and an outstanding rate performance.In particular,even at a high current density of 10 A g^(-1),the 32NVO-MCNF exhibited impressive cycling stability:88.6%over 2500 cycles.The mechanism involved was discovered via comprehensive characterization.We expect that the fabricated nanofibers will be useful in energy storage and conversion systems.
文摘Travel is not just about seeing new places;it's about seeing the world through new eyes.It's an opportunity to learn,to grow and to be inspired.This enlightening journey begins the moment we step out of our comfort zones.
基金supported by the National Natural Science Foundation of China under Grant No.51975023&52322501supported in part by the National Natural Science Foundation of China under Grant No.U22B2040.
文摘In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.
文摘Cyber Defense is becoming a major issue for every organization to keep business continuity intact.The presented paper explores the effectiveness of a meta-heuristic optimization algorithm-Artificial Bees Colony Algorithm(ABC)as an Nature Inspired Cyber Security mechanism to achieve adaptive defense.It experiments on the Denial-Of-Service attack scenarios which involves limiting the traffic flow for each node.Businesses today have adapted their service distribution models to include the use of the Internet,allowing them to effectively manage and interact with their customer data.This shift has created an increased reliance on online services to store vast amounts of confidential customer data,meaning any disruption or outage of these services could be disastrous for the business,leaving them without the knowledge to serve their customers.Adversaries can exploit such an event to gain unauthorized access to the confidential data of the customers.The proposed algorithm utilizes an Adaptive Defense approach to continuously select nodes that could present characteristics of a probable malicious entity.For any changes in network parameters,the cluster of nodes is selected in the prepared solution set as a probable malicious node and the traffic rate with the ratio of packet delivery is managed with respect to the properties of normal nodes to deliver a disaster recovery plan for potential businesses.
基金Programs for Tackling Key Problems in Science and Technology of Henan Province(No.242102110344)Henan Province Science and Technology Research and Development Program Joint Fund Advantageous Discipline Cultivation Project(No.232301420033)。
文摘Triboelectric nanogenerators(TENGs)stand at the forefront of energy harvesting innovation,transforming mechanical energy into electrical power through triboelectrification and electrostatic induction.This groundbreaking technology addresses the urgent need for sustainable and renewable energy solutions,opening new avenues for self-powered systems.Despite their potential,TENGs face challenges such as material optimization for enhanced triboelectric effects,scalability,and improving conversion efficiency under varied conditions.Durability and environmental stability also pose significant hurdles,necessitating further research towards more resilient systems.Nature inspired TENG designs offer promising solutions by emulating biological processes and structures,such as the energy mechanisms of plants and the textured surfaces of animal skins.This biomimetic approach has led to notable improvements in material properties,structural designs,and overall TENG performance,including enhanced energy conversion efficiency and environmental robustness.The exploration into bio-inspired TENGs has unlocked new possibilities in energy harvesting,self-powered sensing,and wearable electronics,emphasizing reduced energy consumption and increased efficiency through innovative design.This review encapsulates the challenges and advancements in nature inspired TENGs,highlighting the integration of biomimetic principles to overcome current limitations.By focusing on augmented electrical properties,biodegradability,and self-healing capabilities,nature inspired TENGs pave the way for more sustainable and versatile energy solutions.
文摘Obstructive sleep apnea (OSA) is a prevalent condition marked by repetitive pharyngeal collapse during sleep, often treated with continuous positive airway pressure (CPAP). However, CPAP compliance remains suboptimal, leading to alternative treatments like the Inspire implant, which stimulates the hypoglossal nerve to maintain airway patency. This case report discusses a 75-year-old male with OSA and CPAP intolerance, successfully treated with the Inspire implant. Postoperative imaging confirmed the proper placement of the device, and the patient reported significant improvements in symptoms. This case highlights the expected radiographic findings of the device.