This paper presents a tunable and polarization-insensitive wideband metamaterial absorber based on single-layer graphene.By comparing the simulated experimental data with theoretical derivations,it was found that the ...This paper presents a tunable and polarization-insensitive wideband metamaterial absorber based on single-layer graphene.By comparing the simulated experimental data with theoretical derivations,it was found that the absorbance of the material can be sustained above 90%in the frequency range of 2.78 to 7.14(4.36)THz,of which the absorption rate exceeds 99%in the frequency range of 4.1–4.54(0.44)THz,and remarkably,perfect absorption is achieved at4.32 THz.In the range of 2.78–7.14 THz,the average absorption rate is 96.1%,by adjusting the physical size of the graphene layer pattern,we can modify the working band gap of the absorber.By applying a voltage to modulate the Fermi level of graphene,we can increase the absorption bandwidth.When the chemical potential is 1.0 e V,at the bandwidth of 4.36 THz,its absorption rate exceeds 90%.The working principle of absorbing materials was deeply explored using the principles of electromagnetic field distribution and impedance adaptation.Through detailed analysis of different polarization states and incident angles,we found that the absorber is not sensitive to polarization due to its symmetrical structure,and found that it exhibits low sensitivity at incidence angles.In addition,after comparative analysis,significant differences were observed in the absorption efficiency of the absorber under various relaxation time conditions,and the obtained data were elaborated in detail using the carrier mechanism of plasma vibration.We found that in addition to obtaining an almost perfect absorber with wide band by adjusting the parameters,it is also feasible to obtain an approximately narrow band absorber by changing the relaxation time without having to remanufacture the structure.The absorber offers several advantages,including tunability,a wide absorption band,a high absorption rate,polarization insensitivity,and a simple structure.Therefore,this absorber exhibits great potential for absorption,monitoring,and sensing in the terahertz band.展开更多
2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reacti...2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.展开更多
Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dime...Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dimensional numerical simulation based on the Euler multiphase flow framework is used to investigate the reflection behavior of the insensitive explosive detonation propagating around a cylinder.The results show that there is a critical incident angle,defined as transition angle for detonation propagating around the cylinder,below which the regular reflection(RR)on the cylinder surface is observed.When the incident angle is greater than the transition angle,RR changes to Mach reflection.This transition angle is larger than that obtained by polar curve theory and the change of incident angle is used to interpret above phenomenon.In addition,the influence of cylindrical radius and detonation reaction zone width on the reflection behavior is examined.As the cylindrical radius increases,the height of Mach stem increases while the transition angle decreases and gradually approaches the value in pole curve theory.Von Neumann reflection is observed when the reaction zone width is relatively small.This is because the energy release rate in the reaction zone is high for small reaction zone width,resulting in the formation of a series of compression waves near the cylindrical interface.展开更多
Polarization insensitive AlGaInAs InP semiconductor optical amplifier is realized at a wavelength of 1550nm.The active layer consists of three tensile strained wells with strain 0 40%.The amplifiers are fabricated ...Polarization insensitive AlGaInAs InP semiconductor optical amplifier is realized at a wavelength of 1550nm.The active layer consists of three tensile strained wells with strain 0 40%.The amplifiers are fabricated to ridge waveguide structure with 7° tilted cavity.The two facets are coated with two layers of anti reflection Ti 3O 5/Al 2O 3 films.Residual facet reflectivity is found to be less than 0 03%.The semiconductor optical amplifer exhibits 20dB of signal gain and 7 2dBm of saturation output power with an excellent polarization insensitivity (less than 0 8dB) at 200mA and 1540nm window.展开更多
Insensitive energetic materials are promising in the defense weapons field.However,energetic materials still suffer from great challenges and the concern about their safety limits their utilization.In this work,insens...Insensitive energetic materials are promising in the defense weapons field.However,energetic materials still suffer from great challenges and the concern about their safety limits their utilization.In this work,insensitive energetic explosive 3,30-diamino-4,40-azoxyfurazan/hexahydro-1,3,5-trinitro-1,3,5-triazine(DAAF/RDX)microspheres were fabricated by self-assembly method.Rod-like DAAF/RDX was prepared by mechanical ball milling for comparison.DAAF/RDX composites with different mass ratios(90:10,80:20,and 70:30)were obtained.The morphologies and structures of as-obtained DAAF/RDX composites were characterized by scanning electron microscopy(SEM),powder x-ray diffraction(PXRD)and fourier transform infrared spectroscopy(FT-IR).The results showed that DAAF/RDX microspheres exhibited regular shaped microspheres with sizes from 0.5 to 1.2 mm.There was no crystal transition during the modification process.The thermal properties of as-obtained materials were then evaluated by differential scanning calorimetry(DSC)and materials studio software.DAAF/RDX microspheres showed an advanced decomposition peak temperature compared with rod-like DAAF/RDX.The binding energy and peak temperature values at zeroβ_(i)(T_(P0))of DAAF/RDX(90:10)increased by 36.77 kJ/mol,1.6℃,and 58.11 kJ/mol,12.3℃compared to DAAF/RDX(80:20)and DAAF/RDX(70:30),indicating the better thermal stability of DAAF/RDX(90:10).The characteristic drop height(H_(50))of DAAF/RDX(higher than 100 cm)composites was higher than that of raw RDX(25 cm),suggesting significant improvements in mechanical safety.The preparation of DAAF/RDX microspheres is promising for the desensitization of RDX and useful for the formation of other materials and future wide applications.展开更多
The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 2...The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P〈0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Sattl50 (LG M) and Satt440 (LG l), were identified in both 2006 and 2007. Twelve SSR markers (P〈0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.展开更多
This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the ...This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1].展开更多
(a)NCA polymerization initiated by LiHMDS or other initiators in THF,initiator i)n-hexylamine,ii)HMDS,iii)bipyNi(COD);(b)LiHMDS-initiated open vessel polymerization of BLGNCA at 26 mg and 2 g scale;(c)GPC traces of po...(a)NCA polymerization initiated by LiHMDS or other initiators in THF,initiator i)n-hexylamine,ii)HMDS,iii)bipyNi(COD);(b)LiHMDS-initiated open vessel polymerization of BLGNCA at 26 mg and 2 g scale;(c)GPC traces of poly-BLG at variable DP;(d)Reaction rates of LiHMDS and hexylamine initiated BLGNCA polymerization in THF with NCA:initiator ratio of 100∶1 and initial NCA concentration at 0.2 mol/L;(e)CD spectra of poly-BLG at variable DP prepared from LiHMDS-initiated NCA polymerization.展开更多
Broadband response metamaterial absorber(MMA)remains a challenge among researchers.A nanostructured new zero-indexed metamaterial(ZIM)absorber is presented in this study,constructed with a hexagonal shape resonator fo...Broadband response metamaterial absorber(MMA)remains a challenge among researchers.A nanostructured new zero-indexed metamaterial(ZIM)absorber is presented in this study,constructed with a hexagonal shape resonator for optical region applications.The design consists of a resonator and dielectric layers made with tungsten and quartz(Fused).The proposed absorbent exhibits average absorption of more than 0.8972(89.72%)within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99(99%)at 461.61 nm.Based on computational analysis,the proposed absorber can be characterized as ZIM.The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect impedance match.The incidence obliquity in typically the range of 0◦–90◦both in TE and TM mode with maximum absorbance is more than 0.8972(∼89.72%),and up to 45◦angular stability is suitable for solar cell applications,like exploiting solar energy.The proposed structure prototype is designed and simulated by studying microwave technology numerical computer simulation(CST)tools.The finite integration technique(FIT)based simulator CST and finite element method(FEM)based simulator HFSS also helps validate the numerical data of the proposed ZIM absorber.The proposed MMA design is appropriate for substantial absorption,wide-angle stability,absolute invisible layers,magnetic resonance imaging(MRI),color images,and thermal imaging applications.展开更多
A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically pro- posed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorpti...A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically pro- posed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorption peaks at the resonance wavelengths of 6.246 μm and 6.837μm when the Fermi level of graphene is fixed at 0. 6 eV. Absorption spectra at different Fermi levels of graphene are displayed and tuning functions are discussed in detail. Both the resonance wavelengths of the absorber blue shift with the increase in Fermi level of graphene. Moreover, the surface current distributions on the gold resonator and ground plane at the two resonance wavelengths are simulated to deeply understand the physical mechanism of resonance absorption.展开更多
A refractive index insensitive temperature sensor based on waist-enlarged few mode fiber(FMF) bitapers is presented. The first section of FMF is spliced between two single-mode fibers. In fusion process,the waist-enla...A refractive index insensitive temperature sensor based on waist-enlarged few mode fiber(FMF) bitapers is presented. The first section of FMF is spliced between two single-mode fibers. In fusion process,the waist-enlarged FMF bitapers can be obtained by large current discharging repeatedly. The refractive index and temperature sensing mechanisms are analyzed. For the sensors with different sizes,the refractive index and temperature experiments have been performed. The results show that in the refractive index ranges of 1.335 0—1.346 6 and 1.348 2—1.419 3,the refractive index insensitivity is verified. In a temperature range of 31.9—90 °C,the sensor sensitivity can be up to 85.57 pm/°C. In addition,it has a compact structure. Therefore,the sensor can avoid the cross sensitivity for measuring the refractive index and temperature simultaneously.展开更多
The paper aims to theoretically and numerically investigate the confinement effect of inert materials on the detonation of insensitive high explosives. An improved shock polar theory based on the Zeldovich-von Neumann...The paper aims to theoretically and numerically investigate the confinement effect of inert materials on the detonation of insensitive high explosives. An improved shock polar theory based on the Zeldovich-von Neumann-Döring model of explosive detonation is established and can fully categorize the confinement interactions between insensitive high explosive and inert materials into six types for the inert materials with smaller sonic velocities than the Chapman-Jouguet velocity of explosive detonation. To confirm the theoretical categorization and obtain the flow details, a second-order, cell-centered Lagrangian hydrodynamic method based on the characteristic theory of the two-dimensional first-order hyperbolic partial differential equations with Ignition-Growth chemistry reaction law is proposed and can exactly numerically simulate the confinement interactions. The numerical result confirms the theoretical categorization and can further merge six types of interaction styles into five types for the inert materials with smaller sonic velocity, moreover, the numerical method can give a new type of interaction style existing a precursor wave in the confining inert material with a larger sonic velocity than the Chapman-Jouguet velocity of explosive detonation, in which a shock polar theory is invalid. The numerical method can also give the effect of inert materials on the edge angles of detonation wave front.展开更多
Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality.Here,we show a detection method for graphene cracks by electromagnetic induction.The tim...Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality.Here,we show a detection method for graphene cracks by electromagnetic induction.The time varying magnetic field leads to induced voltage signals on graphene,and the signals are detected by a voltmeter.The measured level of induced voltage is correlated with the number of cracks in graphene positively.The correlation is attributed to the increasing inductive characteristic of defective graphene,and it is verified by electromagnetic simulation and radio frequency analysis.Furthermore,we demonstrate that the induced voltage signal is insensitive to the doping level of graphene.Our work can potentially lead to the development of a high-throughput and reliable crack inspection technique for mass production of graphene applications.展开更多
In this work,NH_(2)-substituted oxazoles and NO_(2)/NF_(2)/NHNO_(2)-substituted ethylenes/acetylenes were designed and used as dienes and dienophiles,respectively,in order to develop new bridge-ring insensitive high e...In this work,NH_(2)-substituted oxazoles and NO_(2)/NF_(2)/NHNO_(2)-substituted ethylenes/acetylenes were designed and used as dienes and dienophiles,respectively,in order to develop new bridge-ring insensitive high energy compounds through the Diels-Alder reaction between them.The reaction type,reaction feasibility and performance of reaction products were investigated in detail theoretically.The results showed that dienes most possibly react with dienophiles through the HOMO-diene controlled normal Diels-Alder reaction at relatively low energy barrier.Tetranitroethylene could react with the designed dienes much more easily than other dienophiles,and was employed to further design 29 new bridge-ring energetic compounds.Due to high heat of formation,density and oxygen balance,all designed bridge-ring energetic compounds have outstanding detonation performance,16 of them have higher energy than HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocine)and 2 others even possess comparative energy with the representative of high energy compounds CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane).The predicted average h50 value of these bridge-ring energetic compounds is 83 cm,showing their low impact sensitivity.The NH2 groups could obviously impel the proceeding of Diels-Alder reactions,but would slightly decrease the energy and sensitivity performance.In all,the new designed bridge-ring compounds have both high energy and low sensitivity,and may be produced through Diels-Alder reactions at relatively low energy barrier.This paper may be helpful for the theoretical design and experiment synthesis of new advanced insensitive high energy compounds.展开更多
We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are su...We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 Kin either low-Q(10-5) or highQ(10-6) microcavity with the well-designed slot waveguide,which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.展开更多
In this paper, a tension insensitive Pb S fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between t...In this paper, a tension insensitive Pb S fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 με. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.展开更多
Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase,amplitude,and polarization at will.However,the chromatic aberration inherited from building blocks’diffra...Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase,amplitude,and polarization at will.However,the chromatic aberration inherited from building blocks’diffractive nature plagues them when used in many practical applications.Current solutions for eliminating chromatic aberration usually rely on searching through many meta-atoms to seek designs that satisfy both phase and phase dispersion preconditions,inevitably leading to intensive design efforts.Moreover,most schemes are commonly valid for incidence with a specific spin state.Here,inspired by the Rayleigh criterion for spot resolution,we present a design principle for broadband achromatic and polarization-insensitive metalenses using two sets of anisotropic nanofins based on phase change material Ge2Sb2Se4Te1.By limiting the rotation angles of all nanofins to either 0 deg or 90 deg,the metalens with a suitable numerical aperture constructed by this fashion allows for achromatic and polarization-insensitive performance across the wavelength range of 4–5μm,while maintaining high focusing efficiency and diffraction-limited performance.We also demonstrate the versatility of our approach by successfully implementing the generation of broadband achromatic and polarization-insensitive focusing optical vortex.This work represents a major advance in achromatic metalenses and may find more applications in compact and chip-scale devices.展开更多
Luminescence quenching in aqueous environments poses a challenge for practical applications.Lanthanide-doped up-conversion nanoparticles(UCNPs),representative of near-infrared(NIR)-emitting phosphors,typically utilize...Luminescence quenching in aqueous environments poses a challenge for practical applications.Lanthanide-doped up-conversion nanoparticles(UCNPs),representative of near-infrared(NIR)-emitting phosphors,typically utilize Yb3+ions as sensitizers,requiring 980 nm light.This wavelength coincides with the transitions of water molecules,interfering with population dynamics,and continuous irradiation causes unintended heating.Although Nd3+ions,which absorb at 800 nm,serve as alternative sensitizers,their practical use is limited by low quantum yield(Q.Y.).In this study,we developed water-insensitive down-shifting nanoparticles(WINPs)functioning within the NIR-Ⅰrange(700-900 nm)to avoid water interference.Characterization through single-particle-level spectroscopy demonstrated water-insensitive properties,with identical powers density and lifetime profiles under both dry and water conditions.The WINPs achieved a high Q.Y.of 22.1±0.9%,allowing operation at a detection limit power 15-fold lower than UCNPs,effectively eliminating background noise and enhancing overall performance.To assess diagnostic potential,we validated WINP-based lateral flow immunoassay(LFA)for detecting avian influenza viruses(AIVs)in 65 opaque clinical samples,achieving 100%sensitivity and an area under the curve(AUC)of 1.000 at only 100 mW cm^(-2).These findings highlight the potential of WINPs as water-insensitive NIR phosphors that can operate at low power,even in water-rich environments.展开更多
Polarization-insensitive optical modulators allow an external laser to be remotely interconnected by single-mode optical fibers while avoiding polarization controllers,which would be convenient and cost-effective for ...Polarization-insensitive optical modulators allow an external laser to be remotely interconnected by single-mode optical fibers while avoiding polarization controllers,which would be convenient and cost-effective for co-packaged optics,5G,and future 6G applications.In this article,a polarization-insensitive silicon intensity modulator is proposed and experimentally demonstrated based on two-dimensional centrally symmetric gratings,featuring a low polarization-dependent loss of 0.15 dB in minimum and polarization insensitivity of eye diagrams.The device exhibits a low fiber-to-fiber insertion loss of 9 dB and an electro-optic(EO)bandwidth of 49.8 GHz.A modulation speed of up to 224 Gb/s is also demonstrated.展开更多
The Extended Depth of Field(EDF)approach has been combined with Random Illumination Microscopy(RIM)to realize aberration-insensitive,fast super-resolution imaging with extended depth,which is a promising tool for dyna...The Extended Depth of Field(EDF)approach has been combined with Random Illumination Microscopy(RIM)to realize aberration-insensitive,fast super-resolution imaging with extended depth,which is a promising tool for dynamic imaging in larger and thicker live cells and tissues.展开更多
基金the support form the National Natural Science Foundation of China(Grant Nos.51606158,11604311,12074151)the Funded by the Guangxi Science and Technology Base and Talent Special Project(Grant No.AD21075009)+3 种基金the funded by the Sichuan Science and Technology Program(Grant No.2021JDRC0022)the Open Fund of the Key Laboratory for Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology,China(Grant Nos.MECOF2022B01MECOF2023B04)the Project supported by Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202321)。
文摘This paper presents a tunable and polarization-insensitive wideband metamaterial absorber based on single-layer graphene.By comparing the simulated experimental data with theoretical derivations,it was found that the absorbance of the material can be sustained above 90%in the frequency range of 2.78 to 7.14(4.36)THz,of which the absorption rate exceeds 99%in the frequency range of 4.1–4.54(0.44)THz,and remarkably,perfect absorption is achieved at4.32 THz.In the range of 2.78–7.14 THz,the average absorption rate is 96.1%,by adjusting the physical size of the graphene layer pattern,we can modify the working band gap of the absorber.By applying a voltage to modulate the Fermi level of graphene,we can increase the absorption bandwidth.When the chemical potential is 1.0 e V,at the bandwidth of 4.36 THz,its absorption rate exceeds 90%.The working principle of absorbing materials was deeply explored using the principles of electromagnetic field distribution and impedance adaptation.Through detailed analysis of different polarization states and incident angles,we found that the absorber is not sensitive to polarization due to its symmetrical structure,and found that it exhibits low sensitivity at incidence angles.In addition,after comparative analysis,significant differences were observed in the absorption efficiency of the absorber under various relaxation time conditions,and the obtained data were elaborated in detail using the carrier mechanism of plasma vibration.We found that in addition to obtaining an almost perfect absorber with wide band by adjusting the parameters,it is also feasible to obtain an approximately narrow band absorber by changing the relaxation time without having to remanufacture the structure.The absorber offers several advantages,including tunability,a wide absorption band,a high absorption rate,polarization insensitivity,and a simple structure.Therefore,this absorber exhibits great potential for absorption,monitoring,and sensing in the terahertz band.
基金Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(Grant No.2021yjrc38)Anhui Provincial Natural Science Foundation(Grant No.2208085QA27)+1 种基金National Natural Science Foundation of China(Grant Nos.11972046,12002266)the authors would like to thank these foundations for financial support.
文摘2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.
文摘Insensitive explosive detonation has wide applications in compressing and driving inert materials,and thereby the interaction between detonation and inert materials has received more attention.In this paper,a two-dimensional numerical simulation based on the Euler multiphase flow framework is used to investigate the reflection behavior of the insensitive explosive detonation propagating around a cylinder.The results show that there is a critical incident angle,defined as transition angle for detonation propagating around the cylinder,below which the regular reflection(RR)on the cylinder surface is observed.When the incident angle is greater than the transition angle,RR changes to Mach reflection.This transition angle is larger than that obtained by polar curve theory and the change of incident angle is used to interpret above phenomenon.In addition,the influence of cylindrical radius and detonation reaction zone width on the reflection behavior is examined.As the cylindrical radius increases,the height of Mach stem increases while the transition angle decreases and gradually approaches the value in pole curve theory.Von Neumann reflection is observed when the reaction zone width is relatively small.This is because the energy release rate in the reaction zone is high for small reaction zone width,resulting in the formation of a series of compression waves near the cylindrical interface.
文摘Polarization insensitive AlGaInAs InP semiconductor optical amplifier is realized at a wavelength of 1550nm.The active layer consists of three tensile strained wells with strain 0 40%.The amplifiers are fabricated to ridge waveguide structure with 7° tilted cavity.The two facets are coated with two layers of anti reflection Ti 3O 5/Al 2O 3 films.Residual facet reflectivity is found to be less than 0 03%.The semiconductor optical amplifer exhibits 20dB of signal gain and 7 2dBm of saturation output power with an excellent polarization insensitivity (less than 0 8dB) at 200mA and 1540nm window.
基金the National Natural Science Foundation of China(No.22005275)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP,No.2019L0584)+2 种基金Equipment Pre-research Weapons Industry Joint Fund(No.6141B012896)Equipment Pre-research Key Laboratory Fund(No.6142020305)the Advantage Disciplines Climbing Plan of Shanxi Province.
文摘Insensitive energetic materials are promising in the defense weapons field.However,energetic materials still suffer from great challenges and the concern about their safety limits their utilization.In this work,insensitive energetic explosive 3,30-diamino-4,40-azoxyfurazan/hexahydro-1,3,5-trinitro-1,3,5-triazine(DAAF/RDX)microspheres were fabricated by self-assembly method.Rod-like DAAF/RDX was prepared by mechanical ball milling for comparison.DAAF/RDX composites with different mass ratios(90:10,80:20,and 70:30)were obtained.The morphologies and structures of as-obtained DAAF/RDX composites were characterized by scanning electron microscopy(SEM),powder x-ray diffraction(PXRD)and fourier transform infrared spectroscopy(FT-IR).The results showed that DAAF/RDX microspheres exhibited regular shaped microspheres with sizes from 0.5 to 1.2 mm.There was no crystal transition during the modification process.The thermal properties of as-obtained materials were then evaluated by differential scanning calorimetry(DSC)and materials studio software.DAAF/RDX microspheres showed an advanced decomposition peak temperature compared with rod-like DAAF/RDX.The binding energy and peak temperature values at zeroβ_(i)(T_(P0))of DAAF/RDX(90:10)increased by 36.77 kJ/mol,1.6℃,and 58.11 kJ/mol,12.3℃compared to DAAF/RDX(80:20)and DAAF/RDX(70:30),indicating the better thermal stability of DAAF/RDX(90:10).The characteristic drop height(H_(50))of DAAF/RDX(higher than 100 cm)composites was higher than that of raw RDX(25 cm),suggesting significant improvements in mechanical safety.The preparation of DAAF/RDX microspheres is promising for the desensitization of RDX and useful for the formation of other materials and future wide applications.
基金supported by the National Basic Research Program of China(2009CB118400)the Earmarked Fund for Modern Agro-Industry Technology Research System,China(nycytx-004)
文摘The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P〈0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Sattl50 (LG M) and Satt440 (LG l), were identified in both 2006 and 2007. Twelve SSR markers (P〈0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.
基金AlzChem Trostberg GmbH, Trostberg, Germany for funding this work
文摘This paper reviews the detonative properties of low bulk density(LBD),high bulk density(HBD)Nitroguanidine(NGu)(1),CAS-No:[556-88-7]and 82 explosive formulations based on NGu reported in the public domain.To rank the performance of those formulations they are compared with 15 reference compositions containing both standard high explosives such as octogen(HMX)(2),hexogen(RDX)(3),pentaerythritol tetranitrate(PETN)(4),2,4,6-trinitrotoluene(TNT)(5)as well as insensitive high explosives such as 3-nitro-1,2,4-triazolone(NTO)(6),1,3,5-triamino-2,4,6-trinitrobenzene(TATB)(7),1,1-diamino-2,2-dinitroethylene(FOX-7)(8)and N-Guanylurea dinitramide(FOX 12)(9).NGu based formulations are superior to those based on FOX-12 or TATB and are a close match with FOX-7 based explosives,the latter just having higher Gurney Energies(-10%)and slightly higher detonation pressure(+2%).NGu based explosives even reach up to 78% of the detonation pressure,82% Gurney energy and up to 95% of detonation velocity of HMX.LBD-NGu dissolves in many melt cast eutectics forming dense charges thereby eliminating the need for costly High Bulk Density NGu.Nitroguanidine based formulations are at the rock bottom of sensitiveness among all the above-mentioned explosives which contributes to the safety of these formulations.The review gives 132 references to the public domain.For a review on the synthesis spectroscopy and sensitiveness of Nitroguanidine see Ref.[1].
文摘(a)NCA polymerization initiated by LiHMDS or other initiators in THF,initiator i)n-hexylamine,ii)HMDS,iii)bipyNi(COD);(b)LiHMDS-initiated open vessel polymerization of BLGNCA at 26 mg and 2 g scale;(c)GPC traces of poly-BLG at variable DP;(d)Reaction rates of LiHMDS and hexylamine initiated BLGNCA polymerization in THF with NCA:initiator ratio of 100∶1 and initial NCA concentration at 0.2 mol/L;(e)CD spectra of poly-BLG at variable DP prepared from LiHMDS-initiated NCA polymerization.
基金This work is supported by the Universiti Kebangsaan Malaysia research grant GUP-2020-074.
文摘Broadband response metamaterial absorber(MMA)remains a challenge among researchers.A nanostructured new zero-indexed metamaterial(ZIM)absorber is presented in this study,constructed with a hexagonal shape resonator for optical region applications.The design consists of a resonator and dielectric layers made with tungsten and quartz(Fused).The proposed absorbent exhibits average absorption of more than 0.8972(89.72%)within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99(99%)at 461.61 nm.Based on computational analysis,the proposed absorber can be characterized as ZIM.The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect impedance match.The incidence obliquity in typically the range of 0◦–90◦both in TE and TM mode with maximum absorbance is more than 0.8972(∼89.72%),and up to 45◦angular stability is suitable for solar cell applications,like exploiting solar energy.The proposed structure prototype is designed and simulated by studying microwave technology numerical computer simulation(CST)tools.The finite integration technique(FIT)based simulator CST and finite element method(FEM)based simulator HFSS also helps validate the numerical data of the proposed ZIM absorber.The proposed MMA design is appropriate for substantial absorption,wide-angle stability,absolute invisible layers,magnetic resonance imaging(MRI),color images,and thermal imaging applications.
基金Supported by the National Natural Science Foundation of China under Grant No 61001018the Natural Science Foundation of Shandong Province under Grant No ZR2012FM011+4 种基金the Shandong-Provincial Higher Educational Science and Technology Program under Grant No J11LG20the Qingdao City Innovative Leading Talent Plan under Grant No 13-CX-25the THz Science and Technology Foundation of China Academy of Engineering Physics under Grant No 201401the Qingdao Economic and Technical Development Zone Science and Technology Project under Grant No 2013-1-64the Shandong University of Science and Technology Foundation under Grant No YC140108
文摘A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically pro- posed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorption peaks at the resonance wavelengths of 6.246 μm and 6.837μm when the Fermi level of graphene is fixed at 0. 6 eV. Absorption spectra at different Fermi levels of graphene are displayed and tuning functions are discussed in detail. Both the resonance wavelengths of the absorber blue shift with the increase in Fermi level of graphene. Moreover, the surface current distributions on the gold resonator and ground plane at the two resonance wavelengths are simulated to deeply understand the physical mechanism of resonance absorption.
基金supported by the National Natural Science Foundation of China(Nos.61475133 and 61575170)the Key Basic Research Program of Hebei Province(Nos.16961701D and QN2016078)+1 种基金the Natural Science Foundation of Hebei Province(Nos.F2015203270 and F2016203392)the“Xin Rui Gong Cheng”Talent Project of Yanshan University
文摘A refractive index insensitive temperature sensor based on waist-enlarged few mode fiber(FMF) bitapers is presented. The first section of FMF is spliced between two single-mode fibers. In fusion process,the waist-enlarged FMF bitapers can be obtained by large current discharging repeatedly. The refractive index and temperature sensing mechanisms are analyzed. For the sensors with different sizes,the refractive index and temperature experiments have been performed. The results show that in the refractive index ranges of 1.335 0—1.346 6 and 1.348 2—1.419 3,the refractive index insensitivity is verified. In a temperature range of 31.9—90 °C,the sensor sensitivity can be up to 85.57 pm/°C. In addition,it has a compact structure. Therefore,the sensor can avoid the cross sensitivity for measuring the refractive index and temperature simultaneously.
文摘The paper aims to theoretically and numerically investigate the confinement effect of inert materials on the detonation of insensitive high explosives. An improved shock polar theory based on the Zeldovich-von Neumann-Döring model of explosive detonation is established and can fully categorize the confinement interactions between insensitive high explosive and inert materials into six types for the inert materials with smaller sonic velocities than the Chapman-Jouguet velocity of explosive detonation. To confirm the theoretical categorization and obtain the flow details, a second-order, cell-centered Lagrangian hydrodynamic method based on the characteristic theory of the two-dimensional first-order hyperbolic partial differential equations with Ignition-Growth chemistry reaction law is proposed and can exactly numerically simulate the confinement interactions. The numerical result confirms the theoretical categorization and can further merge six types of interaction styles into five types for the inert materials with smaller sonic velocity, moreover, the numerical method can give a new type of interaction style existing a precursor wave in the confining inert material with a larger sonic velocity than the Chapman-Jouguet velocity of explosive detonation, in which a shock polar theory is invalid. The numerical method can also give the effect of inert materials on the edge angles of detonation wave front.
文摘Detection of cracks is a great concern in production and operation processes of graphene based devices to ensure uniform quality.Here,we show a detection method for graphene cracks by electromagnetic induction.The time varying magnetic field leads to induced voltage signals on graphene,and the signals are detected by a voltmeter.The measured level of induced voltage is correlated with the number of cracks in graphene positively.The correlation is attributed to the increasing inductive characteristic of defective graphene,and it is verified by electromagnetic simulation and radio frequency analysis.Furthermore,we demonstrate that the induced voltage signal is insensitive to the doping level of graphene.Our work can potentially lead to the development of a high-throughput and reliable crack inspection technique for mass production of graphene applications.
基金the Natural Science Foundation of Jiangsu(BK20170761)Natural Science Foundation of Nanjing Institute of Technology(JCYJ201806)+1 种基金Science Innovation Project for Undergraduates of Nanjing Institute of Technology(TB202002005)Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province,and Jiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidents.
文摘In this work,NH_(2)-substituted oxazoles and NO_(2)/NF_(2)/NHNO_(2)-substituted ethylenes/acetylenes were designed and used as dienes and dienophiles,respectively,in order to develop new bridge-ring insensitive high energy compounds through the Diels-Alder reaction between them.The reaction type,reaction feasibility and performance of reaction products were investigated in detail theoretically.The results showed that dienes most possibly react with dienophiles through the HOMO-diene controlled normal Diels-Alder reaction at relatively low energy barrier.Tetranitroethylene could react with the designed dienes much more easily than other dienophiles,and was employed to further design 29 new bridge-ring energetic compounds.Due to high heat of formation,density and oxygen balance,all designed bridge-ring energetic compounds have outstanding detonation performance,16 of them have higher energy than HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocine)and 2 others even possess comparative energy with the representative of high energy compounds CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane).The predicted average h50 value of these bridge-ring energetic compounds is 83 cm,showing their low impact sensitivity.The NH2 groups could obviously impel the proceeding of Diels-Alder reactions,but would slightly decrease the energy and sensitivity performance.In all,the new designed bridge-ring compounds have both high energy and low sensitivity,and may be produced through Diels-Alder reactions at relatively low energy barrier.This paper may be helpful for the theoretical design and experiment synthesis of new advanced insensitive high energy compounds.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61435002,61527823,and 61321063)
文摘We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 Kin either low-Q(10-5) or highQ(10-6) microcavity with the well-designed slot waveguide,which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.
基金supported by the National Natural Science Foundation of China(Nos.61675176,61575170 and 61475133)the Research Program of Hebei Province(Nos.16961701D and F2015203270)+1 种基金the Graduate Innovation Project(Nos.2015XJSS031 and 2015XJSS028)the "XinRuiGongCheng" Talent Project of Yanshan University
文摘In this paper, a tension insensitive Pb S fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 με. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.
基金supported by the National Natural Science Foundation of China(Grant No.12004347)the Scientific and Technological Project in Henan Province(Grant Nos.222102210063 and 232102320057)+2 种基金the Aeronautical Science Foundation of China(Grant Nos.2020Z073055002 and 2019ZF055002)the Innovation and Entrepreneurship Training Program for College Students(Grant Nos.202210485007 and 202210485044)the Graduate Education Innovation Program Foundation(Grant No.2022CX53).
文摘Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase,amplitude,and polarization at will.However,the chromatic aberration inherited from building blocks’diffractive nature plagues them when used in many practical applications.Current solutions for eliminating chromatic aberration usually rely on searching through many meta-atoms to seek designs that satisfy both phase and phase dispersion preconditions,inevitably leading to intensive design efforts.Moreover,most schemes are commonly valid for incidence with a specific spin state.Here,inspired by the Rayleigh criterion for spot resolution,we present a design principle for broadband achromatic and polarization-insensitive metalenses using two sets of anisotropic nanofins based on phase change material Ge2Sb2Se4Te1.By limiting the rotation angles of all nanofins to either 0 deg or 90 deg,the metalens with a suitable numerical aperture constructed by this fashion allows for achromatic and polarization-insensitive performance across the wavelength range of 4–5μm,while maintaining high focusing efficiency and diffraction-limited performance.We also demonstrate the versatility of our approach by successfully implementing the generation of broadband achromatic and polarization-insensitive focusing optical vortex.This work represents a major advance in achromatic metalenses and may find more applications in compact and chip-scale devices.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2023R1A2C2003128).
文摘Luminescence quenching in aqueous environments poses a challenge for practical applications.Lanthanide-doped up-conversion nanoparticles(UCNPs),representative of near-infrared(NIR)-emitting phosphors,typically utilize Yb3+ions as sensitizers,requiring 980 nm light.This wavelength coincides with the transitions of water molecules,interfering with population dynamics,and continuous irradiation causes unintended heating.Although Nd3+ions,which absorb at 800 nm,serve as alternative sensitizers,their practical use is limited by low quantum yield(Q.Y.).In this study,we developed water-insensitive down-shifting nanoparticles(WINPs)functioning within the NIR-Ⅰrange(700-900 nm)to avoid water interference.Characterization through single-particle-level spectroscopy demonstrated water-insensitive properties,with identical powers density and lifetime profiles under both dry and water conditions.The WINPs achieved a high Q.Y.of 22.1±0.9%,allowing operation at a detection limit power 15-fold lower than UCNPs,effectively eliminating background noise and enhancing overall performance.To assess diagnostic potential,we validated WINP-based lateral flow immunoassay(LFA)for detecting avian influenza viruses(AIVs)in 65 opaque clinical samples,achieving 100%sensitivity and an area under the curve(AUC)of 1.000 at only 100 mW cm^(-2).These findings highlight the potential of WINPs as water-insensitive NIR phosphors that can operate at low power,even in water-rich environments.
基金National Natural Science Foundation of China(62341508,61974099,62022081)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y2022045)+1 种基金Major Key Project of Peng Cheng LaboratoryOpen Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System(2024LODTS104)。
文摘Polarization-insensitive optical modulators allow an external laser to be remotely interconnected by single-mode optical fibers while avoiding polarization controllers,which would be convenient and cost-effective for co-packaged optics,5G,and future 6G applications.In this article,a polarization-insensitive silicon intensity modulator is proposed and experimentally demonstrated based on two-dimensional centrally symmetric gratings,featuring a low polarization-dependent loss of 0.15 dB in minimum and polarization insensitivity of eye diagrams.The device exhibits a low fiber-to-fiber insertion loss of 9 dB and an electro-optic(EO)bandwidth of 49.8 GHz.A modulation speed of up to 224 Gb/s is also demonstrated.
文摘The Extended Depth of Field(EDF)approach has been combined with Random Illumination Microscopy(RIM)to realize aberration-insensitive,fast super-resolution imaging with extended depth,which is a promising tool for dynamic imaging in larger and thicker live cells and tissues.