ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a ...ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yield-ing rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10.展开更多
[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agric...[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agricultural ecological environment. [Method] Insect-resistant transgenic rice variety HUAHUI No.1 was planted as the experimental material and surrounded by several non-transgenic conventional rice cultivars. F1 non-transgenic rice seeds were collected according to different distances and identified by using PCR technology, the frequency of exogenous gene flow from insect-resistant transgenic rice to non-transgenic conventional rice cultivars was counted and analyzed. [Result] The average frequency of exogenous Bt gene flow to P13381 and CHUNJIANG063 was 0. Transgene flow occurred to varying degrees from insect-resistant transgenic rice HUAHUI No.1 to several non-transgenic rice lines including HEX122-2, TIANXlANG, MINGHUI63 and Pl157, with the maximum average gene flow frequency of 0.875%. The frequency of gene flow was gradually reduced with the increase of distance, and the average transgene flow frequency de- creased to 0 in all the sampling points 7 m away from transgenic rice material. [Conclusion] This study revealed that the exogenous gene flow frequency of insect-re- sistant transgenic rice variety HUAHUI No.1 was very low, leading to very small risk to the eco-environment. Rational distribution in the field for physical isolation, keeping the appropriate distance and scientific farming arrangement to avoid the synchronization of flowering can effectively control the exogenous gene flow from transgenic rice and reduce he ecological risks caused by transgene escape.展开更多
The feeding and oviposition behavior of the brown planthopper (BPH), Nilaparvata lugens on two transgenic indica rice homogenous genotypes (B1 and B6) with cry1Ab gene from Bacillus thuringiensis and trans...The feeding and oviposition behavior of the brown planthopper (BPH), Nilaparvata lugens on two transgenic indica rice homogenous genotypes (B1 and B6) with cry1Ab gene from Bacillus thuringiensis and transgenic restored line of hybrid rice (MSA) with SCK gene (a modified CpTI gene) were measured, compared with those on their corresponding non transgenic parental cultivars Jiazao935 and Minghui86 performed by BPH. Under the selection condition of host plants by BPH, loading percentage, oviposition preference and laying egg number of BPH both on transgenic cry1Ab rice and transgenic SCK rice were not significantly different from those on their controls, while their total number of probing wound caused by PBH expect for feeding on B1 plants was markedly more than that on the control. In contrast, under the non selection condition, total number of probing wound caused by BPH on either transgenic cry1Ab rice or transgenic SCK rice was pronouncedly more than those on their controls. Conversely, their honeydew amount excreted by BPH after feeding for 24 h was significantly less than those on the control. As a conclusion, three tested transgenic rice genotypes with insect resistance acted adverse effect on BHP feeding, and no marked effect on BPH oviposition.展开更多
Huahui 1 is an elite transgenic male sterile restorer line of wild rice abortive-type that expresses a Bacillus thuringiensis (Bt) δ-endotoxin and provides effective and economic control oflepidopteran insects. To ...Huahui 1 is an elite transgenic male sterile restorer line of wild rice abortive-type that expresses a Bacillus thuringiensis (Bt) δ-endotoxin and provides effective and economic control oflepidopteran insects. To exploit Huahui 1 to develop a new Bt rice, the insertion site of the Bt gene was determined by thermal asymmetric interlaced PCR (TAIL-PCR). Bt was located in the promoter region ofLOC. Os10g10360, approximately 5.35 Mb from the telomere of the short arm of chromosome 10. For the first time, a Bt cytoplasmic male sterile (CMS) system was developed by introgressing Bt from Huahui 1. The recipient CMS system used consisted of Indonesia paddy rice-type II-32B (maintainer line) and II-32A (male sterile line). Marker-assisted selection was used to increase selection efficiency in the backcrossing program. In BC5F1, the Bt plant 85015-8 was selected for further analyses, as it had the highest SSR marker homozygosity. In addition, the linkage drag of the foreign Bt gene in 85015-8 was minimized to 8.01-11.46 Mb. The foreign Bt gene was then delivered from 85015-8 into II-32A. The resultant Bt II-32A and Bt II-32B lines were both resistant to lepidopteran in field trials, and agronomic traits were not disturbed. The maintainability of II-32B, and the male sterility and general combining ability of II-32A, were not affected by the Bt introgression. This study demonstrates a simple and fast approach to develop Bt hybrid rice.展开更多
Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, CrylAc and Cryllg...Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, CrylAc and Cryllg, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (GIO) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
[Objective] The paper was to explore the effect of different sowing dates and densities on individual morphological development of super short-season insect-resistant cotton,confirm their effects on vegetative and rep...[Objective] The paper was to explore the effect of different sowing dates and densities on individual morphological development of super short-season insect-resistant cotton,confirm their effects on vegetative and reproductive growth of cotton,so as to provide theoretical and practical guidance for sowing date and density management of cotton planting in Jidong cotton growing region in Yellow River Basin.[Method] With super short-season insect-resistant cotton"546"as materials,the effects of different sowing dates(sowing dateⅠ:May 20;sowing dateⅡ:June 2;sowing date Ⅲ:June 14)and densities(low density:120 000 plants/hm2;middle density:150 000 plants/hm2;high density:180 000 plants/hm2)on individual morphological development of super short-season insect-resistant cotton were explored.[Result] Different sowing dates and density treatments significantly affected the individual morphological development of super short-season insect-resistant cotton"546".The effectiveness of sowing date was higher than the effectiveness of density,and the effectiveness of sowing date on development of number of individual fruit branches was higher than that on plant height and stem diameter.[Conclusion] The regulation of sowing date and density during the cultivation process of super short-season insect-resistant cotton "546" in Jidong cotton growing region in Yellow River Basin could effectively promote vegetative and reproductive growth of cotton,strengthening its production base.展开更多
By using the method of pollen tube pathway,the synthesized GFM CryIA gene and modified CpTI gene were transfered into the elite cotton(Gossypium hirsutun L.)varieties(lines).Through the field and lab identifications,t...By using the method of pollen tube pathway,the synthesized GFM CryIA gene and modified CpTI gene were transfered into the elite cotton(Gossypium hirsutun L.)varieties(lines).Through the field and lab identifications,the insect-resistant transgenic plants were obtained.PCR analysis indicated that both the synthesized GFM CryIA gene and modified CpTI gene presented positive reaction.In R1 the boliworm resistance of each transformant was different,and the insect-resistance of R3 of ZGK9708 was stable.展开更多
In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with ...In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with CryNGc insect-resistant genes were cultured by explant infection,co-culture and differentiation screening to study the genetic expression and resistance of exogenous genes in the offspring.The results showed that the infection effect was the best when the size of young maize embryo was 1.2-1.8 mm.Ten positive transformed plants with CryNGc insect-resistant genes were successfully obtained,and the transformation efficiency was 1.428‰.展开更多
The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase ge...The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research.展开更多
Pre-harvest sprouting(PHS)describes the germination of physiologically mature grains in spikes prior to harvest in cereal crops.PHS could seriously decrease grain yield and quality,which makes it a major constraint to...Pre-harvest sprouting(PHS)describes the germination of physiologically mature grains in spikes prior to harvest in cereal crops.PHS could seriously decrease grain yield and quality,which makes it a major constraint to cereal production worldwide.A number of PHS-associated genes in cereals have been reported;however,the molecular mechanisms underlying PHS remain largely elusive.Here,we report a CRISPRCas9 mutant with severe PHS in a paddy field.The mutated gene OsMFT2 encodes a phosphatidylethanolamine-binding protein(PEBP).Intriguingly,the OsMFT1,in the same PEBP family,had the opposite effect in controlling rice PHS as does OsMFT2.Germination tests of seeds of chimeric protein-expressing plants revealed that the fourth exon conferred the antagonistic activity of OsMFT1 and OsMFT2 in rice PHS.Additionally,two lines of these plants showed elevated grain numbers per panicle,implying that chimeric protein has potential to significantly increase yield.Moreover,transcriptome analysis and genetic studies indicated that OsMFT1 and OsMFT2 performed opposing functions in rice PHS owing to three co-regulated genes that being contrastingly affected by OsMFT1 and OsMFT2.Overall,it seemed that the proper combination of PEBP family members could obtain optimal PHS resistance and high yield.展开更多
Viruses are significant pathogens causing severe plant infections and crop losses globally.The resistance mechanisms of rice to viral diseases,particularly Southern rice black-streaked dwarf virus(SRBSDV),remain poorl...Viruses are significant pathogens causing severe plant infections and crop losses globally.The resistance mechanisms of rice to viral diseases,particularly Southern rice black-streaked dwarf virus(SRBSDV),remain poorly understood.In this study,we assessed SRBSDV susceptibility in 20 Xian/indica(XI)and 20 Geng/japonica(GJ)rice varieties.XI-1B accessions in the Xian subgroup displayed higher resistance than GJ accessions.Comparative transcriptome analysis revealed changes in processes like oxidoreductase activity,jasmonic acid(JA)metabolism,and stress response.JA sensitivity assays further linked antiviral defense to the JA pathway.These findings highlight a JA-mediated resistance mechanism in rice and offer insights for breeding SRBSDV-resistant varieties.展开更多
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicl...Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.展开更多
The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur...The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.展开更多
The RING-type E3 ligase OsBBI1 regulates rice resistance against Magnaporthe oryzae through modifying cell wall defenses.In this study,we report the function of an OsBBI1 substrate,eukaryotic translation initiation fa...The RING-type E3 ligase OsBBI1 regulates rice resistance against Magnaporthe oryzae through modifying cell wall defenses.In this study,we report the function of an OsBBI1 substrate,eukaryotic translation initiation factor OseIF5A4,in rice immunity.OsBBI1 interacts with OseIF5A4 and other four members of the OseIF5A family.The RING domain in OsBBI1 and the eIF-5a domain in OseIF5A4 are critical for the OsBBI1-OseIF5A4 interaction.OsBBI1 ubiquitinates OseIF5A4 and mediates its degradation in vitro and in vivo.Moreover,the expression of OseIF5A4 was upregulated during early stage of compatible interaction but downregulated in incompatible interaction between rice and M.oryzae.Knockout of OseIF5A4 enhances rice immunity against M.oryzae and Xanthomonas oryzae pv.oryzae,boosts pattern-triggered immune responses,and strengthens pathogen-induced defense responses(e.g.,expression of defense genes,accumulation of reactive oxygen species and reinforcement of cell wall).However,overexpression of OseIF5A4 attenuates rice immunity and immune responses.These results demonstrate that OseIF5A4,a substrate of the immunity-associated E3 ligase OsBBI1,negatively regulates rice immunity against M.oryzae and X.oryzae pv.oryzae through modulating pathogen-induced defense responses,highlighting the importance of the protein translational machinery in rice immunity.展开更多
The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple c...The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.展开更多
Alzheimer’s disease(AD)is a neurodegenerative disorder associated with brain aging,and the accumulation ofβ-amyloid(Aβ)and hyperphosphorylated Tau proteins are key pathological features.Currently,drugs for the trea...Alzheimer’s disease(AD)is a neurodegenerative disorder associated with brain aging,and the accumulation ofβ-amyloid(Aβ)and hyperphosphorylated Tau proteins are key pathological features.Currently,drugs for the treatment of AD are mainly single-targeted,but the complex pathogenesis of AD makes it difficult to achieve the desired results.Therefore,the development of multitargeted therapies is crucial for future interventions.Rice bran oil(RBO)has been recognized as an edible oil with several health benefits,but its effects on AD caused by brain aging remain underexplored.In this study,the effects of RBO on memory dysfunction in D-galactose(D-gal)mice and its molecular mechanisms were investigated via in vivo and in silico methods from the perspective of AD pathologies.Our results suggested that compounds in RBO could modulate the activities of Aβprecursor protein cleaving enzyme 1(BACE1),mitogen-activated protein kinase 3(MAPK3),matrix metalloproteinase 3(MMP3),and intercellular adhesion molecule 1(ICAM1),leading to inhibition of Aβaccumulation and Tau protein hyperphosphorylation.Moreover,RBO reduced Aβ-induced oxidative stress by inhibiting the activity of mouse double minute 2 homolog(MDM2)and cyclic adenosine monophosphate(cAMP)response element binding protein binding protein(CREBBP),and attenuated neuroinflammation by inhibiting the activity of nitric oxide synthase 2(NOS2)and reducing Aβaccumulation and Tau protein hyperphosphorylation.Additionally,α-linolenic acid in RBO exhibited inhibitory effects on D-gal-induced apoptosis in PC12 cells through modulation of NOS2,MDM2,ICAM1,and phospho-extracellular signal-regulated kinase 1/2(p-ERK1/2).Similarly,stigmastanol inhibited apoptosis in D-gal-induced PC12 cells through the regulation of NOS2.Thus,RBO can be considered as a potential functional food to attenuate AD owing to its multicomponent and multitarget effects.展开更多
Rice sheath blight(RSB)is a major destructive disease impeding rice production.Identifying key germplasm resources with increased resistance remains a challenge.However,the mechanisms underlying disease resistance are...Rice sheath blight(RSB)is a major destructive disease impeding rice production.Identifying key germplasm resources with increased resistance remains a challenge.However,the mechanisms underlying disease resistance are not yet fully understood.Cytochrome P450 monooxygenases(CYP450s)serve biosynthesis and metabolic detoxification functions in plants,but there is limited information about their role in the response induced by RSB.This study demonstrated that CYT02 belongs to the CYP73A100 subfamily and is a typical member of the CYP450s.Overexpression(OE)in rice of the cytochrome P450 monooxygenase cyt02 conferred increased resistance to RSB and increased vegetative tillering.Cyt02 may increase RSB resistance by regulating plant hormone synthesis,regulate reactive oxygen species(ROS)by coordinating the activity of antioxidant enzymes,and initiate phytoalexin synthesis in response to fungal infection.These research findings have laid a foundation for a deeper understanding of the function of cyt02 and offered a potential target gene for breeding rice varieties resistant to sheath blight.展开更多
Bacterial blight(BB),caused by Xanthomonas oryzae pathovar oryzae(Xoo),poses a significant threat to rice production,particularly in Asia and West Africa.Breeding resistance against BB in elite rice varieties is cruci...Bacterial blight(BB),caused by Xanthomonas oryzae pathovar oryzae(Xoo),poses a significant threat to rice production,particularly in Asia and West Africa.Breeding resistance against BB in elite rice varieties is crucial to advancing rice breeding program and supporting smallholder farmers.Transcription Activator-Like effectors(TALes)are key virulence factors in Xoo,with some targeting the susceptibility(S)genes such as the sugar transporter SWEET genes in rice.Among these,SWEET14 is an important S gene,with its promoter bound by the TALe TalC which exists across all sequenced African Xoo isolates.In the present study,we utilized CRISPR/Cas9-based cytidine and adenine base editors to alter the effector binding element(EBE)of TalC in the promoter of SWEET14 in rice cultivars Kitaake,IR24,and Zhonghua 11.Mutations with C to T changes in EBE led to reduced SWEET14 induction by TalC-containing Xoo strains,resulting in resistance to African Xoo isolates reliant on TalC for virulence.Conversely,A to G changes retained SWEET14 inducibility and susceptibility to Xoo in edited lines.Importantly,no off-target mutations were detected at predicted sites,and the edited lines exhibited no obvious defects in major agronomic traits in Kitaake.These results underscore the effectiveness of base editing systems for both molecular biology research and crop improvement endeavors.展开更多
文摘ITHACA, N.Y. -- Ray J. Wu, Cornell University professor of molecular biology and genetics, who was widely recog-nized as one of the fathers of genetic engineering and who developed and sought to feed the world with a higher yield-ing rice that resists insects and drought, died of cardiac arrest in Ithaca, Feb. 10.
基金Supported by Project of Common Safety Assessment Technology for Genetically Modified Organisms of the Ministry of Agriculture of PRC(2011ZX08011-006)Project of Protection and Utilization of Agricultural Biological Resources"Intrusion Detection of Alien Species"~~
文摘[Objective] This study aimed to investigate the frequency of exogenous gene flow to non-transgenic conventional rice cultivars and assess the potential risks of marker-free of insect-resistant transgenic rice to agricultural ecological environment. [Method] Insect-resistant transgenic rice variety HUAHUI No.1 was planted as the experimental material and surrounded by several non-transgenic conventional rice cultivars. F1 non-transgenic rice seeds were collected according to different distances and identified by using PCR technology, the frequency of exogenous gene flow from insect-resistant transgenic rice to non-transgenic conventional rice cultivars was counted and analyzed. [Result] The average frequency of exogenous Bt gene flow to P13381 and CHUNJIANG063 was 0. Transgene flow occurred to varying degrees from insect-resistant transgenic rice HUAHUI No.1 to several non-transgenic rice lines including HEX122-2, TIANXlANG, MINGHUI63 and Pl157, with the maximum average gene flow frequency of 0.875%. The frequency of gene flow was gradually reduced with the increase of distance, and the average transgene flow frequency de- creased to 0 in all the sampling points 7 m away from transgenic rice material. [Conclusion] This study revealed that the exogenous gene flow frequency of insect-re- sistant transgenic rice variety HUAHUI No.1 was very low, leading to very small risk to the eco-environment. Rational distribution in the field for physical isolation, keeping the appropriate distance and scientific farming arrangement to avoid the synchronization of flowering can effectively control the exogenous gene flow from transgenic rice and reduce he ecological risks caused by transgene escape.
文摘The feeding and oviposition behavior of the brown planthopper (BPH), Nilaparvata lugens on two transgenic indica rice homogenous genotypes (B1 and B6) with cry1Ab gene from Bacillus thuringiensis and transgenic restored line of hybrid rice (MSA) with SCK gene (a modified CpTI gene) were measured, compared with those on their corresponding non transgenic parental cultivars Jiazao935 and Minghui86 performed by BPH. Under the selection condition of host plants by BPH, loading percentage, oviposition preference and laying egg number of BPH both on transgenic cry1Ab rice and transgenic SCK rice were not significantly different from those on their controls, while their total number of probing wound caused by PBH expect for feeding on B1 plants was markedly more than that on the control. In contrast, under the non selection condition, total number of probing wound caused by BPH on either transgenic cry1Ab rice or transgenic SCK rice was pronouncedly more than those on their controls. Conversely, their honeydew amount excreted by BPH after feeding for 24 h was significantly less than those on the control. As a conclusion, three tested transgenic rice genotypes with insect resistance acted adverse effect on BHP feeding, and no marked effect on BPH oviposition.
基金supported by the National High-Tech R&D Program of China(2006AA10Z159)
文摘Huahui 1 is an elite transgenic male sterile restorer line of wild rice abortive-type that expresses a Bacillus thuringiensis (Bt) δ-endotoxin and provides effective and economic control oflepidopteran insects. To exploit Huahui 1 to develop a new Bt rice, the insertion site of the Bt gene was determined by thermal asymmetric interlaced PCR (TAIL-PCR). Bt was located in the promoter region ofLOC. Os10g10360, approximately 5.35 Mb from the telomere of the short arm of chromosome 10. For the first time, a Bt cytoplasmic male sterile (CMS) system was developed by introgressing Bt from Huahui 1. The recipient CMS system used consisted of Indonesia paddy rice-type II-32B (maintainer line) and II-32A (male sterile line). Marker-assisted selection was used to increase selection efficiency in the backcrossing program. In BC5F1, the Bt plant 85015-8 was selected for further analyses, as it had the highest SSR marker homozygosity. In addition, the linkage drag of the foreign Bt gene in 85015-8 was minimized to 8.01-11.46 Mb. The foreign Bt gene was then delivered from 85015-8 into II-32A. The resultant Bt II-32A and Bt II-32B lines were both resistant to lepidopteran in field trials, and agronomic traits were not disturbed. The maintainability of II-32B, and the male sterility and general combining ability of II-32A, were not affected by the Bt introgression. This study demonstrates a simple and fast approach to develop Bt hybrid rice.
基金supported by the National Natural Science Foundation of China(No.31321063)
文摘Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, CrylAc and Cryllg, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (GIO) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
基金Supported by Natural Science Foundation of Heibei Province(C2007000444)Hebei Science and Technology Support Program(10220208)~~
文摘[Objective] The paper was to explore the effect of different sowing dates and densities on individual morphological development of super short-season insect-resistant cotton,confirm their effects on vegetative and reproductive growth of cotton,so as to provide theoretical and practical guidance for sowing date and density management of cotton planting in Jidong cotton growing region in Yellow River Basin.[Method] With super short-season insect-resistant cotton"546"as materials,the effects of different sowing dates(sowing dateⅠ:May 20;sowing dateⅡ:June 2;sowing date Ⅲ:June 14)and densities(low density:120 000 plants/hm2;middle density:150 000 plants/hm2;high density:180 000 plants/hm2)on individual morphological development of super short-season insect-resistant cotton were explored.[Result] Different sowing dates and density treatments significantly affected the individual morphological development of super short-season insect-resistant cotton"546".The effectiveness of sowing date was higher than the effectiveness of density,and the effectiveness of sowing date on development of number of individual fruit branches was higher than that on plant height and stem diameter.[Conclusion] The regulation of sowing date and density during the cultivation process of super short-season insect-resistant cotton "546" in Jidong cotton growing region in Yellow River Basin could effectively promote vegetative and reproductive growth of cotton,strengthening its production base.
文摘By using the method of pollen tube pathway,the synthesized GFM CryIA gene and modified CpTI gene were transfered into the elite cotton(Gossypium hirsutun L.)varieties(lines).Through the field and lab identifications,the insect-resistant transgenic plants were obtained.PCR analysis indicated that both the synthesized GFM CryIA gene and modified CpTI gene presented positive reaction.In R1 the boliworm resistance of each transformant was different,and the insect-resistance of R3 of ZGK9708 was stable.
基金Supported by Strategic Leading Science and Technology Project of Chinese Academy of Sciences(XDA28130504)Special Project of Agricultural Science and Technology Innovation Leaping Project of Heilongjiang Academy of Agricultural Sciences(HNK2019CX14)Scientific Research Fund Project of Heilongjiang Provincial Scientific Research Institutes(CZKYF2021C008)。
文摘In order to promote the research of transgenic insect-resistant maize,the target gene were transferred into maize material Hi-Ⅱ by Agrobacterium-mediated genetic transformation of maize embryos,and maize plants with CryNGc insect-resistant genes were cultured by explant infection,co-culture and differentiation screening to study the genetic expression and resistance of exogenous genes in the offspring.The results showed that the infection effect was the best when the size of young maize embryo was 1.2-1.8 mm.Ten positive transformed plants with CryNGc insect-resistant genes were successfully obtained,and the transformation efficiency was 1.428‰.
基金supported by Science and Technology Innovation Program of Hunan province(2024NK1010,2023NK1010,2023ZJ1080)the National Natural Science Foundation of China(U21A20208).
文摘The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research.
基金supported by the National Natural Science Foundation of China(32172059)Fundamental Research Funds for the Central Universities(SWUXDJH202315).
文摘Pre-harvest sprouting(PHS)describes the germination of physiologically mature grains in spikes prior to harvest in cereal crops.PHS could seriously decrease grain yield and quality,which makes it a major constraint to cereal production worldwide.A number of PHS-associated genes in cereals have been reported;however,the molecular mechanisms underlying PHS remain largely elusive.Here,we report a CRISPRCas9 mutant with severe PHS in a paddy field.The mutated gene OsMFT2 encodes a phosphatidylethanolamine-binding protein(PEBP).Intriguingly,the OsMFT1,in the same PEBP family,had the opposite effect in controlling rice PHS as does OsMFT2.Germination tests of seeds of chimeric protein-expressing plants revealed that the fourth exon conferred the antagonistic activity of OsMFT1 and OsMFT2 in rice PHS.Additionally,two lines of these plants showed elevated grain numbers per panicle,implying that chimeric protein has potential to significantly increase yield.Moreover,transcriptome analysis and genetic studies indicated that OsMFT1 and OsMFT2 performed opposing functions in rice PHS owing to three co-regulated genes that being contrastingly affected by OsMFT1 and OsMFT2.Overall,it seemed that the proper combination of PEBP family members could obtain optimal PHS resistance and high yield.
基金funded by the National Key Research and Development Plan of China(2023YFD1400300)National Natural Science Foundation of China(U23A6006,32270149,32272555)+1 种基金Zhejiang Provincial Natural Science Foundation(LZ22C140001)the Ningbo Major Research and Development Plan Project(2023Z124).
文摘Viruses are significant pathogens causing severe plant infections and crop losses globally.The resistance mechanisms of rice to viral diseases,particularly Southern rice black-streaked dwarf virus(SRBSDV),remain poorly understood.In this study,we assessed SRBSDV susceptibility in 20 Xian/indica(XI)and 20 Geng/japonica(GJ)rice varieties.XI-1B accessions in the Xian subgroup displayed higher resistance than GJ accessions.Comparative transcriptome analysis revealed changes in processes like oxidoreductase activity,jasmonic acid(JA)metabolism,and stress response.JA sensitivity assays further linked antiviral defense to the JA pathway.These findings highlight a JA-mediated resistance mechanism in rice and offer insights for breeding SRBSDV-resistant varieties.
基金funded by grants from the National Natural Science Foundation of China (31930006 to Y.W.)the National Key Research and Development Program of China (2022YFF1002903 to Y.W.)+1 种基金the Top Talents Program “One Case One Discussion”(Yishiyiyi to Y.W.)from Shandong provinceShandong Agricultural University Talent Introduction Start-up Fund (to N.Z.)
文摘Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
基金funded by the Jiangsu Key Research Program,China(BE2022338)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(23)3107)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(22KJB210004)the Jiangsu Province Agricultural Major Technology Collaborative Promotion Project,China(2022-ZYXT-04-1)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX23_3569)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.
基金supported by grants from the National Natural Science Foundation of China(32072403 and 31871945)the National Key Research and Development Program of China(2016YFD0100600).
文摘The RING-type E3 ligase OsBBI1 regulates rice resistance against Magnaporthe oryzae through modifying cell wall defenses.In this study,we report the function of an OsBBI1 substrate,eukaryotic translation initiation factor OseIF5A4,in rice immunity.OsBBI1 interacts with OseIF5A4 and other four members of the OseIF5A family.The RING domain in OsBBI1 and the eIF-5a domain in OseIF5A4 are critical for the OsBBI1-OseIF5A4 interaction.OsBBI1 ubiquitinates OseIF5A4 and mediates its degradation in vitro and in vivo.Moreover,the expression of OseIF5A4 was upregulated during early stage of compatible interaction but downregulated in incompatible interaction between rice and M.oryzae.Knockout of OseIF5A4 enhances rice immunity against M.oryzae and Xanthomonas oryzae pv.oryzae,boosts pattern-triggered immune responses,and strengthens pathogen-induced defense responses(e.g.,expression of defense genes,accumulation of reactive oxygen species and reinforcement of cell wall).However,overexpression of OseIF5A4 attenuates rice immunity and immune responses.These results demonstrate that OseIF5A4,a substrate of the immunity-associated E3 ligase OsBBI1,negatively regulates rice immunity against M.oryzae and X.oryzae pv.oryzae through modulating pathogen-induced defense responses,highlighting the importance of the protein translational machinery in rice immunity.
基金supported by Research Program for Agricultural Science and Technology Development,Republic of Korea(PJ01570601)the Fellowship Program(PJ01661001)of the National Institute of Agricultural Sciences,Republic of KoreaRural Development Administration,Republic of Korea.
文摘The emergence of novel phytopathogens and the accelerated spread of plant diseases to new regions,driven by global climate change,constitute significant threats to agricultural resources.Rice,a major tropical staple crucial for global food security,possesses six transcription factor superfamilies-AP2/ERF,bHLH,bZIP,MYB,NAC,and WRKY-that function in innate immunity against pathogens.We review their biological functions and regulatory mechanisms in rice immunity.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022RC1148)the Natural Science Foundation of Hunan Province(2022JJ31009,2022JJ50260)+4 种基金the Program for Science and Technology of Changsha,China(kh2301028)the Science and Technology Innovation Plan Project of Hunan Province(2023NK2033)the Innovation Leading Plan Project of Hunan Province(2021GK4022)the“Kemen Food”Graduate Science and Technology Innovation Project of Central South University of Forestry and Technology(2023KMCX02)the Graduate Science and Technology Innovation Fund Project of Hunan Province(QL20220182).
文摘Alzheimer’s disease(AD)is a neurodegenerative disorder associated with brain aging,and the accumulation ofβ-amyloid(Aβ)and hyperphosphorylated Tau proteins are key pathological features.Currently,drugs for the treatment of AD are mainly single-targeted,but the complex pathogenesis of AD makes it difficult to achieve the desired results.Therefore,the development of multitargeted therapies is crucial for future interventions.Rice bran oil(RBO)has been recognized as an edible oil with several health benefits,but its effects on AD caused by brain aging remain underexplored.In this study,the effects of RBO on memory dysfunction in D-galactose(D-gal)mice and its molecular mechanisms were investigated via in vivo and in silico methods from the perspective of AD pathologies.Our results suggested that compounds in RBO could modulate the activities of Aβprecursor protein cleaving enzyme 1(BACE1),mitogen-activated protein kinase 3(MAPK3),matrix metalloproteinase 3(MMP3),and intercellular adhesion molecule 1(ICAM1),leading to inhibition of Aβaccumulation and Tau protein hyperphosphorylation.Moreover,RBO reduced Aβ-induced oxidative stress by inhibiting the activity of mouse double minute 2 homolog(MDM2)and cyclic adenosine monophosphate(cAMP)response element binding protein binding protein(CREBBP),and attenuated neuroinflammation by inhibiting the activity of nitric oxide synthase 2(NOS2)and reducing Aβaccumulation and Tau protein hyperphosphorylation.Additionally,α-linolenic acid in RBO exhibited inhibitory effects on D-gal-induced apoptosis in PC12 cells through modulation of NOS2,MDM2,ICAM1,and phospho-extracellular signal-regulated kinase 1/2(p-ERK1/2).Similarly,stigmastanol inhibited apoptosis in D-gal-induced PC12 cells through the regulation of NOS2.Thus,RBO can be considered as a potential functional food to attenuate AD owing to its multicomponent and multitarget effects.
基金supported by the Sichuan Province International Science and Technology Innovation Cooperation(2024YFHZ0299)the Project of Science and Technology Department of Sichuan Province(2022YFH0031)Chengdu Science and Technology Bureau(2024-YF05-02168-SN).
文摘Rice sheath blight(RSB)is a major destructive disease impeding rice production.Identifying key germplasm resources with increased resistance remains a challenge.However,the mechanisms underlying disease resistance are not yet fully understood.Cytochrome P450 monooxygenases(CYP450s)serve biosynthesis and metabolic detoxification functions in plants,but there is limited information about their role in the response induced by RSB.This study demonstrated that CYT02 belongs to the CYP73A100 subfamily and is a typical member of the CYP450s.Overexpression(OE)in rice of the cytochrome P450 monooxygenase cyt02 conferred increased resistance to RSB and increased vegetative tillering.Cyt02 may increase RSB resistance by regulating plant hormone synthesis,regulate reactive oxygen species(ROS)by coordinating the activity of antioxidant enzymes,and initiate phytoalexin synthesis in response to fungal infection.These research findings have laid a foundation for a deeper understanding of the function of cyt02 and offered a potential target gene for breeding rice varieties resistant to sheath blight.
基金supported by a sub-award to the University of Missouri from the Heinrich Heine University of Dusseldorf funded by the Bill&Melinda Gates Foundation(OPP1155704)(Bing Yang)and the China Scholar Council(Chenhao Li,as a joint Ph.D.student).
文摘Bacterial blight(BB),caused by Xanthomonas oryzae pathovar oryzae(Xoo),poses a significant threat to rice production,particularly in Asia and West Africa.Breeding resistance against BB in elite rice varieties is crucial to advancing rice breeding program and supporting smallholder farmers.Transcription Activator-Like effectors(TALes)are key virulence factors in Xoo,with some targeting the susceptibility(S)genes such as the sugar transporter SWEET genes in rice.Among these,SWEET14 is an important S gene,with its promoter bound by the TALe TalC which exists across all sequenced African Xoo isolates.In the present study,we utilized CRISPR/Cas9-based cytidine and adenine base editors to alter the effector binding element(EBE)of TalC in the promoter of SWEET14 in rice cultivars Kitaake,IR24,and Zhonghua 11.Mutations with C to T changes in EBE led to reduced SWEET14 induction by TalC-containing Xoo strains,resulting in resistance to African Xoo isolates reliant on TalC for virulence.Conversely,A to G changes retained SWEET14 inducibility and susceptibility to Xoo in edited lines.Importantly,no off-target mutations were detected at predicted sites,and the edited lines exhibited no obvious defects in major agronomic traits in Kitaake.These results underscore the effectiveness of base editing systems for both molecular biology research and crop improvement endeavors.