This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect m...This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.展开更多
In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-...In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.展开更多
A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presente...A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.展开更多
This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust s...This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust stabilization of such systems are given in the form of linear matrix inequali- ties.The controller design does not have to require that the time-derivative of time-varying input delay be smaller than one. A numeric example is given to show that the proposed results are effective and less conservative.展开更多
This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalitie...This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.展开更多
This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appea...This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.展开更多
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su...A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.展开更多
为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能...为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。展开更多
文摘This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.
基金supported by the National Natural Science Foundation of China(61921004,61520106009,U1713209,61973074)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, we study the consensus problem for a class of linear multi-agent systems(MASs) with consideration of input saturation under the self-triggered mechanism. In the context of discrete-time systems, a self-triggered strategy is developed to determine the time interval between the adjacent triggers. The triggering condition is designed by using the current sampled consensus error. Furthermore, the consensus control protocol is designed by means of a state feedback approach. It is shown that the considered multi-agent systems can reach consensus with the presented algorithm. Some sufficient conditions are proposed in the form of linear matrix inequalities(LMIs) to show the positively invariant property of the domain of attraction(DOA). Moreover, some sufficient conditions of controller synthesis are provided to enlarge the volume of the DOA and obtain the control gain matrix. A numerical example is simulated to demonstrate the effectiveness of the theoretical analysis results.
基金This project was supported by the National Natural Science Foundation of China(60374024)
文摘A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.
基金Supported by National Basic Research Program of China(973 Program)(2002CB312200)National Natural Science Foundation of China(60474045)
文摘This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust stabilization of such systems are given in the form of linear matrix inequali- ties.The controller design does not have to require that the time-derivative of time-varying input delay be smaller than one. A numeric example is given to show that the proposed results are effective and less conservative.
文摘This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.
文摘This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.
基金supported by National Natural Science Foundation of China (No. 60874116)Natural Science Foundation of Hebei Province (No. F2009000857)
文摘A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.