Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence ...Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence has emerged as a major contributor and driver of this process in the mammalian cell.Cellular senescence is a programmed response to stress and irreparable damage,which drives the cell into an apoptosis-resistant,non-proliferative state.Senescent cells can also deleteriously affect neighboring,non-senescent cells.Senescence is a complex and multifaceted process associated with a wide range of cellular events,including the secretion of pro-inflammatory molecules and the arrest of the cell cycle.展开更多
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and hea...Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.展开更多
To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically ...To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
Solar-driven Fenton-like reactions are promising strategies for degrading pharmaceutical wastewater to address environmental challenges and antibiotic pollution.However,its efficacy is limited by suboptimal light abso...Solar-driven Fenton-like reactions are promising strategies for degrading pharmaceutical wastewater to address environmental challenges and antibiotic pollution.However,its efficacy is limited by suboptimal light absorption efficiency,rapid charge recombination,and inadequate interfacial charge transfer.In this study,an inorganic/organic S-scheme photo-Fenton system of pseudobrookite/carbon nitride(FTOCN)was synthesized via a hydrothermally coupled calcination process for the effective purification of tetracycline antibiotics under visible-light irradiation.The optimized FTOCN-2 heterostructure exhibits a significantly enhanced TC degradation capacity of 90%within 60 min.The rate constant of FTOCN-2 is 1.6 and 5.2 times greater than those of FTO and CN,respectively.Furthermore,FTOCN exhibits high antibacterial efficacy,highlighting its potential application in the purification of natural water.Measurements via a range of analytical techniques,including Kelvin probe force microscopy,density functional theory calculations,in situ X-ray photoelectron spectroscopy,and femtosecond transient absorption spectroscopy,corroborate the S-scheme mechanism.This study provides a novel perspective for the development of photo-Fenton systems with S-scheme heterojunctions for water purification.展开更多
The practical application of aqueous zinc-ion batteries(AZIBs)is primarily constrained by issues such as corrosion,zinc dendrite formation,and the hydrogen evolution reaction occurring at the zinc metal anode.To overc...The practical application of aqueous zinc-ion batteries(AZIBs)is primarily constrained by issues such as corrosion,zinc dendrite formation,and the hydrogen evolution reaction occurring at the zinc metal anode.To overcome these challenges,strategies for optimizing the electrolyte are crucial for enhancing the stability of the zinc anode.Inspired by the role of hemoglobin in blood cells,which facilitates oxygen transport during human respiration,an innovative inorganic colloidal electrolyte has been developed:calcium silicate-ZnSO_(4)(denoted as CS-ZSO).This electrolyte operates in weak acidic environment and releases calcium ions,which participate in homotopic substitution with zinc ions,while the solvation environment of hydrated zinc ions in the electrolyte is regulated.The reduced energy barrier for the transfer of zinc ions and the energy barrier for the desolvation of hydrated ions imply faster ion transfer kinetics and accelerated desolvation processes,thus favoring the mass transfer process.Furthermore,the silicate colloidal particles act as lubricants,improving the transfer of zinc ions.Together,these factors contribute to the more uniform concentration of zinc ions at the electrode/electrolyte interface,effectively inhibiting zinc dendrite formation and reducing by-product accumulation.The Zn//CS-ZSO//Zn symmetric cell demonstrates stable operation for over 5000 h at 1 mA cm^(-2),representing 29-fold improvement compared to the Zn//ZSO//Zn symmetric cell,which lasts only 170 h.Additionally,the Zn//CS-ZSO//Cu asymmetric cell shows stable average Coulombic efficiency(CE)exceeding 99.6%over2400 cycles,significantly surpassing the performance of the ZSO electrolyte.This modification strategy for electrolytes not only addresses key limitations associated with zinc anodes but also provides valuable insights into stabilizing anodes for the advancement of high-performance aqueous zinc-ion energy storage systems.展开更多
In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intrig...In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.展开更多
[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and ...[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.展开更多
Inorganic CsPbI_(3)perovskite with superior thermal stability and photoelectric properties has developed into a promising candidate for photovoltaic applications.Nevertheless,the power conversion efficiency(PCE)of CsP...Inorganic CsPbI_(3)perovskite with superior thermal stability and photoelectric properties has developed into a promising candidate for photovoltaic applications.Nevertheless,the power conversion efficiency(PCE)of CsPbI_(3)perovskite solar cells(PSCs)still lags far behind that of both organic-inorganic hybrid counterparts and the theoretical PCE limit,primarily restricted by severe fill factor(FF)and opencircuit voltage(VOC)deficits.Herein,an in-situ self-crosslinking strategy is proposed to construct high-performance inverted inorganic PSCs by incorporating acrylate monomers as additives into CsPbI_(3)perovskite precursors.During the thermal annealing process of perovskite films,acrylate monomers can form network structures by breaking the C=C groups through an in-situ polymerization reaction,mainly anchored at the grain boundaries(GBs)and on the surfaces of perovskite.Meanwhile,the C=O groups of acrylate polymers can favorably coordinate with uncoordinated Pb^(2+),thereby decreasing defect density and stabilizing the perovskite phase.Particularly,with multiple crosslinking and passivation sites,the incorporation of dipentaerythritol pentaacrylate(DPHA)can effectively improve the perovskite film quality,suppress nonradiative recombination,and block moisture erosion.Consequently,the DPHAbased PSC achieves a champion PCE of 20.05%with a record-high FF of 85.05%,both of which rank among the top in the performance of inverted CsPbI_(3)PSCs.Moreover,the unencapsulated DPHA-based device exhibits negligible hysteresis,remarkably improved long-term storage,and operational stability.This work offers a facile and useful strategy to simultaneously promote the efficiency and device stability of inverted inorganic PSCs.展开更多
The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the...The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the defect formation energy.Here,a flexible molecule 5-maleimidovaleric acid(5-MVA)was introduced as a strain buffer to release the residual strain of CsPbI_(2.85)Br_(0.15)perovskite.Maleic anhydride and carboxyl groups in 5-MVA interact strongly with the uncoordinated Pb^(2+)through Lewis acid-base reaction,thus tightly“pull”the perovskite lattice.The in-between soft carbon chain increased the structural flexibility of CsPbI_(2.85)Br_(0.15)perovskite materials,which effectively relieved the intrinsic internal strain of CsPbI_(2.85)Br_(0.15),resisted the corrosion of external strain,and also reduced the formation of defects such as VIand Pb0.In addition,the introduction of 5-MVA improved crystal quality,passivated residual defects,and narrowed energy level barriers.Eventually,power conversion efficiency(PCE)of NiOxbased inverted IPSCs increased from 19.25%to 20.82%with the open-circuit voltage enhanced from 1.164 V to 1.230 V.The release of strain also improved the stability of CsPbI_(2.85)Br_(0.15)perovskite films and devices.展开更多
Renal cell carcinoma(RCC)as one of the most commonly diagnosed cancers threatens human health.The treatment of RCC demands more advanced protocols for better prognosis and higher quality of life.In recent years,the bl...Renal cell carcinoma(RCC)as one of the most commonly diagnosed cancers threatens human health.The treatment of RCC demands more advanced protocols for better prognosis and higher quality of life.In recent years,the blooming of nanomaterials in various fields demonstrates its critical role as one of the most important components in constructing a smart therapeutic platform against RCC.Herein,focusing on the therapeutic inorganic nanomaterials(such as carbon nanomaterials,metal nanomaterials,oxide nanomaterials),their functions as drug carriers,external field sensitizers,and/or RCC microenvironment sensitizers are analyzed.In combination with the advantages of nanomaterial and RCC characteristics,the trends in integrating nanomaterial to construct multifunctional theranostic platforms for RCC treatment are highlighted.Also,possible solutions concerning the life trajectory and long-term toxicity of nanomaterials are put forward.These perspectives may promote the development of smarter and more effective systems for comprehensive RCC treatment.展开更多
The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of differen...The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.展开更多
The water adsorption performance of shale gas reservoirs is a very important factor affecting their gas in place(GIP)contents,but the water-holding capacity and mechanism of over-mature shale,especially organic pores,...The water adsorption performance of shale gas reservoirs is a very important factor affecting their gas in place(GIP)contents,but the water-holding capacity and mechanism of over-mature shale,especially organic pores,are still not fully understood.In this study,systematic water vapor adsorption(WVA)experiments were carried out on the Lower Cambrian over-mature shale and its kerogen from the Sichuan Basin,China to characterize their WVA behaviors,and combined with the low-pressure gas(N_(2) and CO_(2))adsorption experiments,the main influencing factors of WVA capacity of the shale and the absorbed-water distribution in its organic and inorganic nanopores were investigated.The results show that the WVA isotherms of shale and kerogen are all typeⅡ,with an obvious hysteresis loop in the multilayer adsorption range,and that the positive relationship of the shale TOC content with the WVA capacity(including total adsorption capacity,primary adsorption capacity and secondary adsorption capacity)and WVA hysteresis index(AHIW),and the greater adsorption capacity and AHIW of kerogen than the shale,all indicate that the hydrophilicity of organic matter(OM)in the over-mature shale was underestimated in previous research.Although both the shale OM and clay minerals have a significant positive effect on the WVA,the former has a stronger adsorption ability than the latter.The WVA capacity of the studied Lower Cambrian shale is significantly greater than that of the Longmaxi shale reported in literatures,which was believed to be mainly attributed to its higher maturity,with a significant graphitization of OM.The shale micropores and non-micropores play an important role in WVA,especially OM pores.There are primary and secondary adsorption for water vapor in both the micropores and non-micropores of OM,while these adsorptions of minerals mainly occur in their non-micropores.These results have important guides for understanding the gas storage mechanism and exploration and development potential of marine over-mature shale in southern China,especially the Lower Cambrian shale.展开更多
CsPbBr_(3)perovskite solar cells(PSCs)have attracted significant interest for their remarkable stability under high temperatures and humidity.However,challenges such as energy loss at the CsPbBr_(3)/oxide buried inter...CsPbBr_(3)perovskite solar cells(PSCs)have attracted significant interest for their remarkable stability under high temperatures and humidity.However,challenges such as energy loss at the CsPbBr_(3)/oxide buried interface and imperfect band alignment have impeded further efficiency enhancements.In this study,TiO_(2),SnO_(2),or ZnO was employed as electron transport layer(ETL)materials,respectively,in CsPbBr_(3)-based PSCs to optimize the band alignment at the ETL/CsPbBr_(3)interface and enhance the film quality of CsPbBr_(3)materials.The research findings indicate that the power conversion efficiency(PCE)of PSCs is influenced by the choice of ETL material.Specifically,TiO_(2)-based PSCs achieved a PCE of 10.37%efficiency,higher than SnO_(2)-or ZnO-based PSCs.This disparity in PCE can be attributed to variations in open-circuit voltage,which stem from different band alignments at the ETL/CsPbBr_(3)interface.Notably,superior photovoltaic performance was consistently observed in TiO_(2)-based PSCs due to the substantial conduction band offset(∆Ec)at the TiO_(2)/CsPbBr_(3)interface and the high quality of the CsPbBr_(3)film.This not only enhances electron extraction at the TiO_(2)/CsPbBr_(3)interface but also diminishes non-radiative recombination at the interface,as confirmed by density functional theory(DFT)calculations and experiments.Furthermore,photodetectors(PDs)based on TiO_(2)/CsPbBr_(3)heterojunction exhibit high photoresponse and photodetectivity.In conclusion,this study underscores the critical importance of the buried interface contact in CsPbBr_(3)and offers a direct approach for fabricating efficient and stable inorganic PSCs and PDs.展开更多
For large-scale energy storage devices,all-solid-state sodium-ion batteries(SIBs)have been revered for the abundant resources,low cost,safety performance and a wide operating temperature range.Na-ion solid-state elect...For large-scale energy storage devices,all-solid-state sodium-ion batteries(SIBs)have been revered for the abundant resources,low cost,safety performance and a wide operating temperature range.Na-ion solid-state electrolytes(Na-ion SSEs)are the critical parts and mostly determine the electrochemical performance of SIBs.Among the studied ones,inorganic Na-ion SSEs stand out for their good safety performance and high ionic conductivity.In this review,we outline the research progress of inorganic SSEs in SIBs based on the perspectives of crystal structure,performance optimization,synthesis methods,allsolid-state SIBs,interface modification and related characterization techniques.We hope to provide some ideas for the design of future high-performance Na-ion SSEs.展开更多
The publisher regrets to inform that in the article of Advanced Powder Materials 4(2025)100261,the published Figs.3 and 5 belong to the initially submitted version,which should be replaced by the final version.The dif...The publisher regrets to inform that in the article of Advanced Powder Materials 4(2025)100261,the published Figs.3 and 5 belong to the initially submitted version,which should be replaced by the final version.The differences between the initial and final versions of these figures are described below.展开更多
This study investigates the spatial distribution and regulatory mechanisms of dissolved inorganic carbon(DIC) in Xiangshan Bay, East China Sea, addressing critical gaps in carbon cycling research within semi-enclosed ...This study investigates the spatial distribution and regulatory mechanisms of dissolved inorganic carbon(DIC) in Xiangshan Bay, East China Sea, addressing critical gaps in carbon cycling research within semi-enclosed bays. Through isotopic analysis(δ^(13)C_(DIC), δD and δ^(18)O) and hydrochemical measurements [salinity and dissolved oxygen(DO)] of surface and bottom seawater samples from 52 stations, we demonstrate that δ^(13)C_(DIC) values(surface:-3.6‰ to-2.1‰;bottom:-3.6‰ to-1.8‰) exhibit distinct vertical and spatial patterns, with higher values in surface waters and outer bay regions compared to bottom and inner bay areas. Conservative mixing between seawater(average contribution:56%) and freshwater dominates DIC dynamics, while tidal hydrodynamics amplify the imprint of riverine inputs during low tides. Nutrient gradients driven by saline-freshwater mixing enhance primary productivity in outer bay regions,resulting in 13C-enriched DIC and elevated dissolved organic carbon(DOC) concentrations. Conversely, bottom waters show 13C-depleted signatures(-2.75‰ mean δ^(13)C_(DIC)), reflecting organic matter degradation under oxygen-depleted conditions. Aquaculture activities exacerbate localized eutrophication, with monsoon-enhanced runoff amplifying anthropogenic impacts. This work underscores the sensitivity of coastal carbon cycling to both natural hydrodynamics and anthropogenic perturbations in semi-enclosed bays.展开更多
Sodium-ion batteries have garnered significant attention due to their abundant sodium resources and low cost,showing great potential for large-scale energy storage.However,traditional sodium-ion batteries,which rely o...Sodium-ion batteries have garnered significant attention due to their abundant sodium resources and low cost,showing great potential for large-scale energy storage.However,traditional sodium-ion batteries,which rely on flammable liquid electrolytes as the ion transport medium,pose safety challenges in practical applications.Using solid-state electrolytes instead of liquid electrolytes can effectively improve the safety and electrochemical performance of battery systems,making solid-state sodium-ion batteries as a highly promising option for energy storage.Solid-state electrolytes are categorized into organic and inorganic types.Inorganic solid-state electrolytes have garnered increased interest for their high ionic conductivity,high ion mobility,excellent mechanical properties,and good thermal stability.This review systematically explores the advancements in various inorganic solid-state electrolytes,includingβ-Al_(2)O_(3),sodium superionic conductor,sulfide,halide,complex hydride,and anti-perovskite.The review focuses on material preparation,ionic conductivity,and electrochemical properties.Additionally,it addresses the interface challenges between inorganic solid-state electrolytes and electrode materials,along with effective strategies to improve these interfaces.展开更多
Widespread soil acidification driven by nitrogen(N)fertilization and precipitation challenges the conventional notion of the long-term stability of soil inorganic carbon(SIC)in agroecosystems.However,the changes in SI...Widespread soil acidification driven by nitrogen(N)fertilization and precipitation challenges the conventional notion of the long-term stability of soil inorganic carbon(SIC)in agroecosystems.However,the changes in SIC with precipitation and N fertilization remain ambiguous.Based on 4,000+soil samples collected in the 1980s and 2010s and by developing machine learning models to fill the missing SIC of soil samples,this study generated 3,697 paired soil samples between the two periods and then investigated the cropland SIC change and explored its relationship with precipitation and N fertilization across the Sichuan Basin,China.The results showed an overall SIC loss,with a decline of the mean SIC by 15.73%.SIC change varied with initial soil pH and initial SIC and exhibited an exponential relationship with soil pH change,indicating the changing role of carbonates in providing acid-buffering capacity.There was a parabolical relationship between the magnitude of SIC decline and N fertilizer rates,and low N fertilizer rates contributed to a reduction in SIC loss,while SIC loss was promoted by N fertilization occurred when N fertilizing rates exceeded 250 kg ha^(-1) yr^(-1).The change in SIC showed a sinusoidal variation with precipitation,with 950 mm being the threshold controlling whether SIC increased or decreased.Meanwhile,N fertilization did not alter the sinusoidal relationship between SIC change and precipitation.In areas with rainfall<950 mm,the high N fertilizer rate did not cause SIC loss,while higher precipitation could also cause larger SIC loss in areas with lower N fertilizer rates.These results suggest that SIC dynamics are jointly driven by precipitation and N fertilization and are controlled by acid-buffering mechanisms associated with initial pH and SIC,with precipitation being the predominant driver.These findings emphasize the need for more regional soil observations and in-depth studies of SIC change and its mechanisms for accurately estimating SIC change.展开更多
文摘Aging is considered the main risk factor for the development of several diseases,including the leading neurodegenerative disorders.While the cellular features of aging are complex and multifaceted,neuronal senescence has emerged as a major contributor and driver of this process in the mammalian cell.Cellular senescence is a programmed response to stress and irreparable damage,which drives the cell into an apoptosis-resistant,non-proliferative state.Senescent cells can also deleteriously affect neighboring,non-senescent cells.Senescence is a complex and multifaceted process associated with a wide range of cellular events,including the secretion of pro-inflammatory molecules and the arrest of the cell cycle.
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
基金support from the earmarked fund for XJARS(No.XJARS-06)the Bingtuan Science and Technology Program(Nos.2021DB019,2022CB001-01)+1 种基金the National Natural Science Foundation of China(No.42275014)the Guangdong Foundation for Program of Science and Technology Research,China(No.2023B1212060044)。
文摘Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.
基金supported by Fundamental Research Funds for the Central Universities(300102214908)Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
文摘Solar-driven Fenton-like reactions are promising strategies for degrading pharmaceutical wastewater to address environmental challenges and antibiotic pollution.However,its efficacy is limited by suboptimal light absorption efficiency,rapid charge recombination,and inadequate interfacial charge transfer.In this study,an inorganic/organic S-scheme photo-Fenton system of pseudobrookite/carbon nitride(FTOCN)was synthesized via a hydrothermally coupled calcination process for the effective purification of tetracycline antibiotics under visible-light irradiation.The optimized FTOCN-2 heterostructure exhibits a significantly enhanced TC degradation capacity of 90%within 60 min.The rate constant of FTOCN-2 is 1.6 and 5.2 times greater than those of FTO and CN,respectively.Furthermore,FTOCN exhibits high antibacterial efficacy,highlighting its potential application in the purification of natural water.Measurements via a range of analytical techniques,including Kelvin probe force microscopy,density functional theory calculations,in situ X-ray photoelectron spectroscopy,and femtosecond transient absorption spectroscopy,corroborate the S-scheme mechanism.This study provides a novel perspective for the development of photo-Fenton systems with S-scheme heterojunctions for water purification.
基金the Doctoral Research Start-up Fund of Hubei University of Science and Technology(BK202504)the Natural Science Foundation of Liaoning Province(2023-MS-115)。
文摘The practical application of aqueous zinc-ion batteries(AZIBs)is primarily constrained by issues such as corrosion,zinc dendrite formation,and the hydrogen evolution reaction occurring at the zinc metal anode.To overcome these challenges,strategies for optimizing the electrolyte are crucial for enhancing the stability of the zinc anode.Inspired by the role of hemoglobin in blood cells,which facilitates oxygen transport during human respiration,an innovative inorganic colloidal electrolyte has been developed:calcium silicate-ZnSO_(4)(denoted as CS-ZSO).This electrolyte operates in weak acidic environment and releases calcium ions,which participate in homotopic substitution with zinc ions,while the solvation environment of hydrated zinc ions in the electrolyte is regulated.The reduced energy barrier for the transfer of zinc ions and the energy barrier for the desolvation of hydrated ions imply faster ion transfer kinetics and accelerated desolvation processes,thus favoring the mass transfer process.Furthermore,the silicate colloidal particles act as lubricants,improving the transfer of zinc ions.Together,these factors contribute to the more uniform concentration of zinc ions at the electrode/electrolyte interface,effectively inhibiting zinc dendrite formation and reducing by-product accumulation.The Zn//CS-ZSO//Zn symmetric cell demonstrates stable operation for over 5000 h at 1 mA cm^(-2),representing 29-fold improvement compared to the Zn//ZSO//Zn symmetric cell,which lasts only 170 h.Additionally,the Zn//CS-ZSO//Cu asymmetric cell shows stable average Coulombic efficiency(CE)exceeding 99.6%over2400 cycles,significantly surpassing the performance of the ZSO electrolyte.This modification strategy for electrolytes not only addresses key limitations associated with zinc anodes but also provides valuable insights into stabilizing anodes for the advancement of high-performance aqueous zinc-ion energy storage systems.
文摘In recent years,chiral inorganic nanomaterials have become promising candidates for applications in sensing,catalysis,biomedicine,and photonics.Plasmonic nanomaterials with an intrinsic chiral structure exhibit intriguing geometry‑dependent optical chirality,which benefits the combination of plasmonic characteristics with chirality.Recent advances in the biomolecule‑directed geometric control of intrinsically chiral plasmonic nanomaterials have further provided great opportunities for their widespread applications in many emerging technological areas.In this review,we present the recent progress in biosensing using chiral inorganic nanomaterials,with a particular focus on electrochemical and enzyme‑mimicking catalytic approaches.This paper commences with a review of the basic tenets underlying chiral nanocatalysts,incorporating the chiral ligand‑induced mechanism and the architectures of intrinsically chiral nanostructures.Additionally,it methodically expounds upon the applications of chiral nanocatalysts in the realms of electrochemical biosensing and enzyme‑mimicking catalytic biosensing respectively.Conclusively,it proffers a prospective view of the hurdles and prospects that accompany the deployment of chiral nanoprobes for nascent biosensing applications.By rational design of the chiral nanoprobes,it is envisioned that biosensing with increasing sensitivity and resolution toward the single‑molecule level can be achieved,which will substantially promote sensing applications in many emerging interdisciplinary areas.
基金Supported by Project of NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine(2023GSMPA-KL06,2024GSMPA-KL16).
文摘[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.
基金supported by the Program for Science and Technology Innovation Team in Zhejiang(Grant No.2021R01004)the Natural Science Foundation of Ningbo City(No.2023J119)+1 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project(2023QL029)K.C.Wong Magna Fund in Ningbo University,China。
文摘Inorganic CsPbI_(3)perovskite with superior thermal stability and photoelectric properties has developed into a promising candidate for photovoltaic applications.Nevertheless,the power conversion efficiency(PCE)of CsPbI_(3)perovskite solar cells(PSCs)still lags far behind that of both organic-inorganic hybrid counterparts and the theoretical PCE limit,primarily restricted by severe fill factor(FF)and opencircuit voltage(VOC)deficits.Herein,an in-situ self-crosslinking strategy is proposed to construct high-performance inverted inorganic PSCs by incorporating acrylate monomers as additives into CsPbI_(3)perovskite precursors.During the thermal annealing process of perovskite films,acrylate monomers can form network structures by breaking the C=C groups through an in-situ polymerization reaction,mainly anchored at the grain boundaries(GBs)and on the surfaces of perovskite.Meanwhile,the C=O groups of acrylate polymers can favorably coordinate with uncoordinated Pb^(2+),thereby decreasing defect density and stabilizing the perovskite phase.Particularly,with multiple crosslinking and passivation sites,the incorporation of dipentaerythritol pentaacrylate(DPHA)can effectively improve the perovskite film quality,suppress nonradiative recombination,and block moisture erosion.Consequently,the DPHAbased PSC achieves a champion PCE of 20.05%with a record-high FF of 85.05%,both of which rank among the top in the performance of inverted CsPbI_(3)PSCs.Moreover,the unencapsulated DPHA-based device exhibits negligible hysteresis,remarkably improved long-term storage,and operational stability.This work offers a facile and useful strategy to simultaneously promote the efficiency and device stability of inverted inorganic PSCs.
基金financial support of National Key Research and Development Program of China(Grant No.2022YFB04200302)joint funds of National Natural Science Foundation of China(Grant No.62104115)+5 种基金National Natural Science Foundation of China(Grant No.U21A2072)Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Key R&D Program of Hebei Province(No.19214301D)Yunnan Provincial Science and Technology Project at Southwest United Graduate School(No.202302A0370009)Haihe Laboratory of Sustainable Chemical TransformationsFundamental Research Funds for the Central Universities,Nankai University。
文摘The tensile strain in inorganic perovskite films induced by thermal annealing is one of the primary factors contributing to the inefficiency and instability of inorganic perovskite solar cells(IPSCs),which reduces the defect formation energy.Here,a flexible molecule 5-maleimidovaleric acid(5-MVA)was introduced as a strain buffer to release the residual strain of CsPbI_(2.85)Br_(0.15)perovskite.Maleic anhydride and carboxyl groups in 5-MVA interact strongly with the uncoordinated Pb^(2+)through Lewis acid-base reaction,thus tightly“pull”the perovskite lattice.The in-between soft carbon chain increased the structural flexibility of CsPbI_(2.85)Br_(0.15)perovskite materials,which effectively relieved the intrinsic internal strain of CsPbI_(2.85)Br_(0.15),resisted the corrosion of external strain,and also reduced the formation of defects such as VIand Pb0.In addition,the introduction of 5-MVA improved crystal quality,passivated residual defects,and narrowed energy level barriers.Eventually,power conversion efficiency(PCE)of NiOxbased inverted IPSCs increased from 19.25%to 20.82%with the open-circuit voltage enhanced from 1.164 V to 1.230 V.The release of strain also improved the stability of CsPbI_(2.85)Br_(0.15)perovskite films and devices.
基金the financial support from the National Natural Science Foundation of China(No.82270756)the Basic and Applied Basic Research Foundation of Guangdong Province,China(Nos.2414050006150,2024A1515011405)+2 种基金the Science and Technology Project of Guangzhou,China(No.202102010133)the Science and Technology Project of Heyuan,China(Nos.230510171473346,230510171473347)the Medical Joint Fund of Jinan University。
文摘Renal cell carcinoma(RCC)as one of the most commonly diagnosed cancers threatens human health.The treatment of RCC demands more advanced protocols for better prognosis and higher quality of life.In recent years,the blooming of nanomaterials in various fields demonstrates its critical role as one of the most important components in constructing a smart therapeutic platform against RCC.Herein,focusing on the therapeutic inorganic nanomaterials(such as carbon nanomaterials,metal nanomaterials,oxide nanomaterials),their functions as drug carriers,external field sensitizers,and/or RCC microenvironment sensitizers are analyzed.In combination with the advantages of nanomaterial and RCC characteristics,the trends in integrating nanomaterial to construct multifunctional theranostic platforms for RCC treatment are highlighted.Also,possible solutions concerning the life trajectory and long-term toxicity of nanomaterials are put forward.These perspectives may promote the development of smarter and more effective systems for comprehensive RCC treatment.
基金supported by the National Natural Science Foundation of China(42372144)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01E09)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-05).
文摘The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.
基金supported by the National Natural Science Foundation of China(42030804,42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Fundamental Research Funds for the Central Universities,grant number:2652023001).
文摘The water adsorption performance of shale gas reservoirs is a very important factor affecting their gas in place(GIP)contents,but the water-holding capacity and mechanism of over-mature shale,especially organic pores,are still not fully understood.In this study,systematic water vapor adsorption(WVA)experiments were carried out on the Lower Cambrian over-mature shale and its kerogen from the Sichuan Basin,China to characterize their WVA behaviors,and combined with the low-pressure gas(N_(2) and CO_(2))adsorption experiments,the main influencing factors of WVA capacity of the shale and the absorbed-water distribution in its organic and inorganic nanopores were investigated.The results show that the WVA isotherms of shale and kerogen are all typeⅡ,with an obvious hysteresis loop in the multilayer adsorption range,and that the positive relationship of the shale TOC content with the WVA capacity(including total adsorption capacity,primary adsorption capacity and secondary adsorption capacity)and WVA hysteresis index(AHIW),and the greater adsorption capacity and AHIW of kerogen than the shale,all indicate that the hydrophilicity of organic matter(OM)in the over-mature shale was underestimated in previous research.Although both the shale OM and clay minerals have a significant positive effect on the WVA,the former has a stronger adsorption ability than the latter.The WVA capacity of the studied Lower Cambrian shale is significantly greater than that of the Longmaxi shale reported in literatures,which was believed to be mainly attributed to its higher maturity,with a significant graphitization of OM.The shale micropores and non-micropores play an important role in WVA,especially OM pores.There are primary and secondary adsorption for water vapor in both the micropores and non-micropores of OM,while these adsorptions of minerals mainly occur in their non-micropores.These results have important guides for understanding the gas storage mechanism and exploration and development potential of marine over-mature shale in southern China,especially the Lower Cambrian shale.
基金supported by the National Natural Science Foundation of China(Nos.62304171 and 62374128)the China Postdoctoral Science Foundation(No.2022M722500)+2 种基金the Key Research and Development Program of Shaanxi Province(No.2024GX-YBXM-512)Xidian University Specially Funded Project for Interdisciplinary Exploration(Nos.TZJH2024052 and TZJH2024050)the Fundamental Research Funds for the Central Universities,the open fund of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology(No.2024-KF-12).
文摘CsPbBr_(3)perovskite solar cells(PSCs)have attracted significant interest for their remarkable stability under high temperatures and humidity.However,challenges such as energy loss at the CsPbBr_(3)/oxide buried interface and imperfect band alignment have impeded further efficiency enhancements.In this study,TiO_(2),SnO_(2),or ZnO was employed as electron transport layer(ETL)materials,respectively,in CsPbBr_(3)-based PSCs to optimize the band alignment at the ETL/CsPbBr_(3)interface and enhance the film quality of CsPbBr_(3)materials.The research findings indicate that the power conversion efficiency(PCE)of PSCs is influenced by the choice of ETL material.Specifically,TiO_(2)-based PSCs achieved a PCE of 10.37%efficiency,higher than SnO_(2)-or ZnO-based PSCs.This disparity in PCE can be attributed to variations in open-circuit voltage,which stem from different band alignments at the ETL/CsPbBr_(3)interface.Notably,superior photovoltaic performance was consistently observed in TiO_(2)-based PSCs due to the substantial conduction band offset(∆Ec)at the TiO_(2)/CsPbBr_(3)interface and the high quality of the CsPbBr_(3)film.This not only enhances electron extraction at the TiO_(2)/CsPbBr_(3)interface but also diminishes non-radiative recombination at the interface,as confirmed by density functional theory(DFT)calculations and experiments.Furthermore,photodetectors(PDs)based on TiO_(2)/CsPbBr_(3)heterojunction exhibit high photoresponse and photodetectivity.In conclusion,this study underscores the critical importance of the buried interface contact in CsPbBr_(3)and offers a direct approach for fabricating efficient and stable inorganic PSCs and PDs.
基金supported by the National Natural Science Foundation of China(Nos.22175070,22293041)supported by the National Key Research and Development Program(Nos.2021YFB2500200,2021YFB2400300)+1 种基金the National Natural Science Foundation of China(No.52177214)China Fujian Energy Devices Science and Technology Innovation Laboratory Open Fund(No.21C-OP202211)。
文摘For large-scale energy storage devices,all-solid-state sodium-ion batteries(SIBs)have been revered for the abundant resources,low cost,safety performance and a wide operating temperature range.Na-ion solid-state electrolytes(Na-ion SSEs)are the critical parts and mostly determine the electrochemical performance of SIBs.Among the studied ones,inorganic Na-ion SSEs stand out for their good safety performance and high ionic conductivity.In this review,we outline the research progress of inorganic SSEs in SIBs based on the perspectives of crystal structure,performance optimization,synthesis methods,allsolid-state SIBs,interface modification and related characterization techniques.We hope to provide some ideas for the design of future high-performance Na-ion SSEs.
文摘The publisher regrets to inform that in the article of Advanced Powder Materials 4(2025)100261,the published Figs.3 and 5 belong to the initially submitted version,which should be replaced by the final version.The differences between the initial and final versions of these figures are described below.
基金The National Key R&D Program of China under contract No. 2022YFE0209300National Natural Science Foundation of China under contract No. 42176091+1 种基金Asia Cooperation Fund of China (Comparative Study of Geoenvironment and Geohazards in the Yangtze River Delta and the Red River Delta)China Geological Survey Project under contract No. DD20242714。
文摘This study investigates the spatial distribution and regulatory mechanisms of dissolved inorganic carbon(DIC) in Xiangshan Bay, East China Sea, addressing critical gaps in carbon cycling research within semi-enclosed bays. Through isotopic analysis(δ^(13)C_(DIC), δD and δ^(18)O) and hydrochemical measurements [salinity and dissolved oxygen(DO)] of surface and bottom seawater samples from 52 stations, we demonstrate that δ^(13)C_(DIC) values(surface:-3.6‰ to-2.1‰;bottom:-3.6‰ to-1.8‰) exhibit distinct vertical and spatial patterns, with higher values in surface waters and outer bay regions compared to bottom and inner bay areas. Conservative mixing between seawater(average contribution:56%) and freshwater dominates DIC dynamics, while tidal hydrodynamics amplify the imprint of riverine inputs during low tides. Nutrient gradients driven by saline-freshwater mixing enhance primary productivity in outer bay regions,resulting in 13C-enriched DIC and elevated dissolved organic carbon(DOC) concentrations. Conversely, bottom waters show 13C-depleted signatures(-2.75‰ mean δ^(13)C_(DIC)), reflecting organic matter degradation under oxygen-depleted conditions. Aquaculture activities exacerbate localized eutrophication, with monsoon-enhanced runoff amplifying anthropogenic impacts. This work underscores the sensitivity of coastal carbon cycling to both natural hydrodynamics and anthropogenic perturbations in semi-enclosed bays.
基金supported by the National Natural Science Foundation of China(No.22205182)National Science Fund for Distinguished Young Scholars(No.52025034)+1 种基金China Postdoctoral Science Foundation(Nos.2022M722594 and 2024T171170)Basic and Applied Basic Research Foundation of Guangdong(No.2024A1515011516).
文摘Sodium-ion batteries have garnered significant attention due to their abundant sodium resources and low cost,showing great potential for large-scale energy storage.However,traditional sodium-ion batteries,which rely on flammable liquid electrolytes as the ion transport medium,pose safety challenges in practical applications.Using solid-state electrolytes instead of liquid electrolytes can effectively improve the safety and electrochemical performance of battery systems,making solid-state sodium-ion batteries as a highly promising option for energy storage.Solid-state electrolytes are categorized into organic and inorganic types.Inorganic solid-state electrolytes have garnered increased interest for their high ionic conductivity,high ion mobility,excellent mechanical properties,and good thermal stability.This review systematically explores the advancements in various inorganic solid-state electrolytes,includingβ-Al_(2)O_(3),sodium superionic conductor,sulfide,halide,complex hydride,and anti-perovskite.The review focuses on material preparation,ionic conductivity,and electrochemical properties.Additionally,it addresses the interface challenges between inorganic solid-state electrolytes and electrode materials,along with effective strategies to improve these interfaces.
基金supported by the National Natural Science Foundation of China(42330707 and 41930647)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(72221002)the Science and Technology Plan of Sichuan Province,China(2022NSFSC0104).
文摘Widespread soil acidification driven by nitrogen(N)fertilization and precipitation challenges the conventional notion of the long-term stability of soil inorganic carbon(SIC)in agroecosystems.However,the changes in SIC with precipitation and N fertilization remain ambiguous.Based on 4,000+soil samples collected in the 1980s and 2010s and by developing machine learning models to fill the missing SIC of soil samples,this study generated 3,697 paired soil samples between the two periods and then investigated the cropland SIC change and explored its relationship with precipitation and N fertilization across the Sichuan Basin,China.The results showed an overall SIC loss,with a decline of the mean SIC by 15.73%.SIC change varied with initial soil pH and initial SIC and exhibited an exponential relationship with soil pH change,indicating the changing role of carbonates in providing acid-buffering capacity.There was a parabolical relationship between the magnitude of SIC decline and N fertilizer rates,and low N fertilizer rates contributed to a reduction in SIC loss,while SIC loss was promoted by N fertilization occurred when N fertilizing rates exceeded 250 kg ha^(-1) yr^(-1).The change in SIC showed a sinusoidal variation with precipitation,with 950 mm being the threshold controlling whether SIC increased or decreased.Meanwhile,N fertilization did not alter the sinusoidal relationship between SIC change and precipitation.In areas with rainfall<950 mm,the high N fertilizer rate did not cause SIC loss,while higher precipitation could also cause larger SIC loss in areas with lower N fertilizer rates.These results suggest that SIC dynamics are jointly driven by precipitation and N fertilization and are controlled by acid-buffering mechanisms associated with initial pH and SIC,with precipitation being the predominant driver.These findings emphasize the need for more regional soil observations and in-depth studies of SIC change and its mechanisms for accurately estimating SIC change.