Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or...Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.展开更多
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni...Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.展开更多
Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude ...Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.展开更多
The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-roll...The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-rolled alloys are significantly enhanced compared to those of the as-cast alloy.When subjected to three rolling passes at 450℃ and 490℃,grain refinement occurs due to dynamic recrystallization.A mixed-grain structure is formed after a single pass rolling with a substantial reduction(65%)at 490℃.The dynamic recrystallization(DRX)mechanism of the alloy during the HPR includes continuous dynamic recrystallization(CDRX),discontinuous dynamic recrystallization(DDRX),and twin-induced recrystallization(TDRX).The WE54 alloy exhibits the highest strength after three passes of HPR at 450℃,with tensile strength and yield strength of 374 and 323 MPa,respectively.The significant improvement in the mechanical properties of the alloy is primarily attributed to fine-grain strengthening,solid solution strengthening,and dislocation strengthening.展开更多
The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the...The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.展开更多
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie...Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.展开更多
Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extrac...Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extraction velocity(v_(e))and extraction distance(L)in the formation process of air curtain,the numerical simulation method was used to analyze the rules of airflow structure evolution and the diffusion characteristics of dust particles in fully mechanized excavation tunnel.The results indicate that as v_(r) and v_(e) increase,the migration path of the wall jet of the air curtain changes into an axial direction;as L decreases,the migration distance increases accordingly.These phenomena make the airflow distribution in the working face tends to be uniform.The dust diffusion distance reduces as well,wherein,the range of the discrete area of dust particles decreases sharply,until all dust particles are concentrated in the accumulation area.On this basis,the v_(r),v_(e) and L were optimized and applied in the 63_(up) 08 fully mechanized working face.By the application of the optimal parameters,the average dust removal efficiency at the driver’s position increased by 71%.The dust concentration was reduced and the working environment had been improved effectively.展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed me...Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed method for enriching auriferous pyrite from these ores.This study aimed to develop a more efficient flotation process by utilizing cavitation nanobubbles for a low-grade gold ore.Batch flotation tests demonstrated that nanobubbles significantly enhanced the flotation performance of auriferous pyrite,as evidenced by improved concentrate S and Au grades and their recoveries.The mechanisms underlying this enhancement were explored by investigat-ing surface nanobubble(SNB)formation,bulk nanobubble(BNB)attachment to hydrophobic pyrite surfaces,and nanobubble-induced agglomeration using atomic force microscopy(AFM)and focused beam reflectance measurement(FBRM).The results revealed that nan-obubble coverage on the pyrite surface is a critical factor influencing surface hydrophobicity and agglomeration.SNBs exhibited higher coverage on pyrite surfaces with increased surface hydrophobicity,flow rate,and cavitation time.Similarly,BNB attachment on pyrite surfaces was significantly increased with surface hydrophobicity and cavitation time.Enhanced surface hydrophobicity,along with higher flow rates and cavitation times,promoted pyrite particle agglomeration owing to the increased nanobubble coverage,ultimately leading to improved flotation performance.展开更多
Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding ...Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.展开更多
Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowad...Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management.展开更多
PBQ[1-(4-chlorophenyl)-3-(pyridin-3-yl)urea],an enormous potent molluscicide,showed excellent Pomacea canaliculata(P.canaliculata)control activity and low toxicity for other aquatic organisms,but its snail-killing mec...PBQ[1-(4-chlorophenyl)-3-(pyridin-3-yl)urea],an enormous potent molluscicide,showed excellent Pomacea canaliculata(P.canaliculata)control activity and low toxicity for other aquatic organisms,but its snail-killing mechanisms are still not fully understood.We employed an optical method to elucidate PBQ action via a novel fluorescent viscosity probe,NCV.As the viscosity in the test solutions increased,compared with that in pure ethanol,a 54-fold fluorescence intensity enhancement of NCV was observed in 310 cP of 90%glycerol.Furthermore,NCV successfully exhibited a selective fluorescence response towards monensin-induced cellular viscosity changes in HepG2 cells.The liver,stomach,and foot plantar of the tested snails were frozen and sectioned for fluorescent imaging experiments after the treatment with different PBQ concentrations over various times.A significant fluorescent increase in the snail's liver was observed upon exposure to 0.75 mg/L PBQ for 72 h,which highlighted an increase in viscosity.Hematoxylin and eosin(HE)staining further supported PBQ-induced liver damage with a viscosity increase in P.canaliculata.Our study provides a new rapid optical visualization method to study the killing mechanisms of PBQ and may help discover new chemicals that control snail populations.展开更多
In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are cru...In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are crucial for performance optimization and regulation.However,existing studies have yet to fully reveal the underlying synergistic mechanisms,which limits the application and promotion of high SS content in mine backfill and low-carbon building materials.This study systematically explores the synergistic effects between various solid wastes and their regulation of the hydration process in the SS-based cementitious system through multi-scale characterization techniques.The results show that GBFS,by releasing active Si^(4+)and Al^(3+),triggers a synergistic activation effect with Ca^(2+)provided by SS,promoting the formation of C-S-H gel and ettringite,significantly optimizing the hardened paste microstructure.When the GBFS content reaches 30%,the C-S-H content increases by 40.8%,the pore size distribution improves,the proportion of large pores decreases by 68.7%,and the 90-day compressive strength increases to 5 times that of the baseline group.The sulfate activation effect of DG accelerates the hydration of silicate minerals,but excessive incorporation(>16%)can lead to microcracks caused by the expansion of AFt crystals,resulting in a strength reduction.Under the synergistic effect of 8%DG and 30%GBFS,the hydration reaction is most intense,with the peak heat release rate reaching 0.92 mW/g and the cumulative heat release amount being 240 J/g.By constructing a“SS-GBFS-DG-cement”quaternary synergistic system(mass ratio range:SS:GBFS:cement:DG=(50–62):(20–40):10:(8–12)),the matching of active components in high-content SS systems was optimized,significantly improving microstructural defects and meeting engineering application requirements.This study provides a theoretical basis for the component design and performance regulation of high-content SS-based cementitious materials.展开更多
With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ...With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.展开更多
Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food...Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.展开更多
Gastric ulcer(GU)is a common digestive system disease.Acupuncture,as one of the external treatments of traditional Chinese medicine(TCM),has the characteristics of multi-target,multi-pathway and multi-level action in ...Gastric ulcer(GU)is a common digestive system disease.Acupuncture,as one of the external treatments of traditional Chinese medicine(TCM),has the characteristics of multi-target,multi-pathway and multi-level action in the treatment of GU.The relationship between meridian points and Zang-fu is an important part of the theory of TCM,which is crucial for the diagnosis and treatment of diseases.There is an external and internal link between acupoints and Zang-fu.The pathological reaction of Zang-fu can manifest as acupoint sensitization,while stimulation of acupoints can play a therapeutic role in the internal Zang-fu.Therefore,the acupoint has the functions of reflecting and treating diseases.This review explores the tender points on the body surface of patients with GU and the rules of acupoint selection.In addition,Zusanli(ST36),as one of the most used acupoints of the stomach meridian,was selected to show the mechanisms behind acupoint stimulation in the treatment of GU in greater detail,specifically in the well-studied model of the stress GU(SGU).Hence,the mechanisms of acupuncture at ST36 and points commonly used in combination with ST36 to treat SGU are discussed further.Treatment effects can be achieved through anti-inflammatory and antioxidant activities,gastric mucosal injury repair,and interaction with the brain-gut axis.In summary,this review provides evidence for a comprehensive understanding of the phenomena and mechanism of acupoint functions for GU.展开更多
In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challeng...In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.展开更多
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will...How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.展开更多
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ...The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.展开更多
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金Project supported by the National Natural Science Foundation of China(52074031)the Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP202117)。
文摘Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.
基金financial support from the Na-tional Natural Science Foundation of China(No.52231006)National Key Research and Development Program of China(No.2017YFB0702003)the National Natural Science Foundation of China(No.51871217).
文摘Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘Source properties and stress fields are critical to understand fundamental mechanisms for fluid-induced earthquakes.In this study,we identify the focal mechanism solutions(FMSs)of 360 earthquakes with local magnitude M_(L)≥1.5 in the Changning shale gas field from January 2016 to May 2017 by fitting three-component waveforms.We then constrain the directions of the maximum horizontal stress(σ_(H_(max)))for four dense earthquake clusters using the stress tensor inversion method.The stress drops of 121 earthquakes with M_(L)≥1.5 are calculated using the spectral ratio method.We examine the spatiotemporal heterogeneity of stress field,and discuss the cause of non-double-couple(non-DC)components in seismicity clusters.Following the Mohr-Coulomb criterion,we estimate the fluid overpressure thresholds from FMS for different seismic clusters,providing insights into potential physical mechanisms for induced seismicity.The FMS results indicate that shallow reverse earthquakes,with steep dip angles,characterize most events.The source mechanisms of earthquakes with M_(L)≥1.5 are dominated by DC components(>70%),but several earthquakes with M_(L)>3.0 and the microseismic events nearby during injection period display significant non-DC components(>30%).Stress inversion results reveal that the σ_(H_(max)) direction ranges from 120°to 128°.Stress drops of earthquakes range between 0.10 and 64.49 MPa,with high values occurring on reverse faults situated at a greater distance from the shale layer,accompanied by a moderate rotation(≤25°)in the trend of σ_(H_(max)).The seismic clusters close to the shale layer exhibit low fluid overpressure thresholds,prone to being triggered by high pore-pressure fluid.The integrated results suggest that the diffusion of high pore pressures is likely to be the primary factor for observed earthquakes.The present results are expected to offer valuable insights into the origin of anomalous seismicity near the shale gas sites.
基金financially supported by the Natural Science Basic Research Program of Shaanxi Province,China(No.2023-JC-QN-0581)Advanced Power Specialty,China(No.YK22C-9)。
文摘The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-rolled alloys are significantly enhanced compared to those of the as-cast alloy.When subjected to three rolling passes at 450℃ and 490℃,grain refinement occurs due to dynamic recrystallization.A mixed-grain structure is formed after a single pass rolling with a substantial reduction(65%)at 490℃.The dynamic recrystallization(DRX)mechanism of the alloy during the HPR includes continuous dynamic recrystallization(CDRX),discontinuous dynamic recrystallization(DDRX),and twin-induced recrystallization(TDRX).The WE54 alloy exhibits the highest strength after three passes of HPR at 450℃,with tensile strength and yield strength of 374 and 323 MPa,respectively.The significant improvement in the mechanical properties of the alloy is primarily attributed to fine-grain strengthening,solid solution strengthening,and dislocation strengthening.
基金supported by Natural Science Foundation of Liaoning Province of China under Grant No.2020-MS-085。
文摘The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.
基金supported by the National Key R&D Program of China(No.2022YFC3901800)the National Natural Science Foundation of China(No.22176041)Guangzhou Science and Technology Planning Project(No.2023A04J0918)。
文摘Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2020QE124,ZR2023ME031 and ZR2023ME012)Innovation Achievement Cultivation Project of Qingdao University of Technology(CLZ2022-002)National Natural Science Foundation of China(52404222 and 52374209).
文摘Aiming at reducing the dust pollution during the tunneling process and improving the application efficiency of air curtain dust prevention technology,according to the changes of radial jet velocity(v_(r)),axial extraction velocity(v_(e))and extraction distance(L)in the formation process of air curtain,the numerical simulation method was used to analyze the rules of airflow structure evolution and the diffusion characteristics of dust particles in fully mechanized excavation tunnel.The results indicate that as v_(r) and v_(e) increase,the migration path of the wall jet of the air curtain changes into an axial direction;as L decreases,the migration distance increases accordingly.These phenomena make the airflow distribution in the working face tends to be uniform.The dust diffusion distance reduces as well,wherein,the range of the discrete area of dust particles decreases sharply,until all dust particles are concentrated in the accumulation area.On this basis,the v_(r),v_(e) and L were optimized and applied in the 63_(up) 08 fully mechanized working face.By the application of the optimal parameters,the average dust removal efficiency at the driver’s position increased by 71%.The dust concentration was reduced and the working environment had been improved effectively.
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金support from the National Natural Science Foundation of China(No.52204274)the Shandong Provincial Natural Science Foundation,China(No.ZR2021QE122)+1 种基金Shandong Provincial Department of Science and Technology Key Project,China(No.2023TZXD021)Shandong Provincial Department of Science and Technology,China(No.ZTYJY-KY-2033-11).
文摘Gold ores in the Jiaozhou region of China are characterized by their abundant reserves,low grade,fine dissemination,and chal-lenges in upgrading.Froth flotation,with xanthate as the collector,is a commonly employed method for enriching auriferous pyrite from these ores.This study aimed to develop a more efficient flotation process by utilizing cavitation nanobubbles for a low-grade gold ore.Batch flotation tests demonstrated that nanobubbles significantly enhanced the flotation performance of auriferous pyrite,as evidenced by improved concentrate S and Au grades and their recoveries.The mechanisms underlying this enhancement were explored by investigat-ing surface nanobubble(SNB)formation,bulk nanobubble(BNB)attachment to hydrophobic pyrite surfaces,and nanobubble-induced agglomeration using atomic force microscopy(AFM)and focused beam reflectance measurement(FBRM).The results revealed that nan-obubble coverage on the pyrite surface is a critical factor influencing surface hydrophobicity and agglomeration.SNBs exhibited higher coverage on pyrite surfaces with increased surface hydrophobicity,flow rate,and cavitation time.Similarly,BNB attachment on pyrite surfaces was significantly increased with surface hydrophobicity and cavitation time.Enhanced surface hydrophobicity,along with higher flow rates and cavitation times,promoted pyrite particle agglomeration owing to the increased nanobubble coverage,ultimately leading to improved flotation performance.
基金funding support from the NSFC Key Projects of International Cooperation and Exchanges (Grant No.42020104006)the National Key Research and Development Program of China (Grant No.2023YFC3007001)the National Natural Science Foundation of China (Grant No.42307227).
文摘Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by drying-wetting(D-W)cycles,which results in a significant decrease in mechanical properties.A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides.However,quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited.Here,we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles.Firstly,we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles.We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio.Secondly,we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests.Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure.Then,structural deterioration processes including cementation destruction,pores expansion,aggregations decomposition,and clusters assembly are considered to occur to decay the shear strength differently.Finally,a three-stage deterioration mechanism associated with four structural deterioration processes is revealed,which helps to better interpret the intrinsic mechanism of shear strength decay.These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations.
基金supported by the National Key Research and Development Program of China(No.2021YFA0715900).
文摘Located in northern China,the Hetao Plain is an important agro-economic zone and population centre.The deterioration of local groundwater quality has had a serious impact on human health and economic development.Nowadays,the groundwater vulnerability assessment(GVA)has become an essential task to identify the current status and development trend of groundwater quality.In this study,the Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)models are integrated to realize the spatio-temporal prediction of regional groundwater vulnerability by introducing the Self-attention mechanism.The study firstly builds the CNN-LSTM modelwith self-attention(SA)mechanism and evaluates the prediction accuracy of the model for groundwater vulnerability compared to other common machine learning models such as Support Vector Machine(SVM),Random Forest(RF),and Extreme Gradient Boosting(XGBoost).The results indicate that the CNNLSTM model outperforms thesemodels,demonstrating its significance in groundwater vulnerability assessment.It can be posited that the predictions indicate an increased risk of groundwater vulnerability in the study area over the coming years.This increase can be attributed to the synergistic impact of global climate anomalies and intensified local human activities.Moreover,the overall groundwater vulnerability risk in the entire region has increased,evident fromboth the notably high value and standard deviation.This suggests that the spatial variability of groundwater vulnerability in the area is expected to expand in the future due to the sustained progression of climate change and human activities.The model can be optimized for diverse applications across regional environmental assessment,pollution prediction,and risk statistics.This study holds particular significance for ecological protection and groundwater resource management.
基金the financial support of this work by the National Natural Science Foundation of China(Nos.82072309,22067019 and 22367023)the Major Science and Technology Projects in Yunnan Province(No.202402AE090006)+3 种基金the Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform(No.2022YKZY001)Yunnan Provincial Science and Technology Department Yunnan University Joint Special Project(No.202201BF070001-001)the Postgraduate Research Innovation Foundation of Yunnan University(No.KC-23234403)the Scientific Research Foundation Project of Yunnan Provincial Department of Education(No.2023Y0240)。
文摘PBQ[1-(4-chlorophenyl)-3-(pyridin-3-yl)urea],an enormous potent molluscicide,showed excellent Pomacea canaliculata(P.canaliculata)control activity and low toxicity for other aquatic organisms,but its snail-killing mechanisms are still not fully understood.We employed an optical method to elucidate PBQ action via a novel fluorescent viscosity probe,NCV.As the viscosity in the test solutions increased,compared with that in pure ethanol,a 54-fold fluorescence intensity enhancement of NCV was observed in 310 cP of 90%glycerol.Furthermore,NCV successfully exhibited a selective fluorescence response towards monensin-induced cellular viscosity changes in HepG2 cells.The liver,stomach,and foot plantar of the tested snails were frozen and sectioned for fluorescent imaging experiments after the treatment with different PBQ concentrations over various times.A significant fluorescent increase in the snail's liver was observed upon exposure to 0.75 mg/L PBQ for 72 h,which highlighted an increase in viscosity.Hematoxylin and eosin(HE)staining further supported PBQ-induced liver damage with a viscosity increase in P.canaliculata.Our study provides a new rapid optical visualization method to study the killing mechanisms of PBQ and may help discover new chemicals that control snail populations.
基金funded by the National Natural Science Foundation of China(No.52308316)Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2022-01)+1 种基金Fudamental Research Funds for the CentralUniversities,CHD(No.300102265303)the Science and Technology Innovation Project of China Coal Technology&Engineering Group Shenyang Engineering Company(No.NKJ001-2025).
文摘In the steel slag-based mine backfill cementitious material systems,the hydration reaction mechanisms and synergistic effects of steel slag(SS),granulated blast furnace slag(GBFS),and desulfurization gypsum(DG)are crucial for performance optimization and regulation.However,existing studies have yet to fully reveal the underlying synergistic mechanisms,which limits the application and promotion of high SS content in mine backfill and low-carbon building materials.This study systematically explores the synergistic effects between various solid wastes and their regulation of the hydration process in the SS-based cementitious system through multi-scale characterization techniques.The results show that GBFS,by releasing active Si^(4+)and Al^(3+),triggers a synergistic activation effect with Ca^(2+)provided by SS,promoting the formation of C-S-H gel and ettringite,significantly optimizing the hardened paste microstructure.When the GBFS content reaches 30%,the C-S-H content increases by 40.8%,the pore size distribution improves,the proportion of large pores decreases by 68.7%,and the 90-day compressive strength increases to 5 times that of the baseline group.The sulfate activation effect of DG accelerates the hydration of silicate minerals,but excessive incorporation(>16%)can lead to microcracks caused by the expansion of AFt crystals,resulting in a strength reduction.Under the synergistic effect of 8%DG and 30%GBFS,the hydration reaction is most intense,with the peak heat release rate reaching 0.92 mW/g and the cumulative heat release amount being 240 J/g.By constructing a“SS-GBFS-DG-cement”quaternary synergistic system(mass ratio range:SS:GBFS:cement:DG=(50–62):(20–40):10:(8–12)),the matching of active components in high-content SS systems was optimized,significantly improving microstructural defects and meeting engineering application requirements.This study provides a theoretical basis for the component design and performance regulation of high-content SS-based cementitious materials.
基金financially supported by the National Key Research and Development Program of China(2023YFB3809300)。
文摘With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.
基金supported by the Natural Science Foundation of Hebei Province(No.E2022208046)National Science Foundation of China(No.52004080)+2 种基金Key project of National Natural Science Foundation of China(No.U20A20130)Key research and development project of Hebei Province(No.22373704D)2023 Central Government Guide Local Science and Technology Development Fund Project(No.236Z1812 G)。
文摘Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.
基金funded by National Key Research and Development Program of China(No.2022YFC3501705)National Natural Science Foundation of China general projects(No.82274066)Shanghai Science and Technology Innovation Project(No.22S21901200).
文摘Gastric ulcer(GU)is a common digestive system disease.Acupuncture,as one of the external treatments of traditional Chinese medicine(TCM),has the characteristics of multi-target,multi-pathway and multi-level action in the treatment of GU.The relationship between meridian points and Zang-fu is an important part of the theory of TCM,which is crucial for the diagnosis and treatment of diseases.There is an external and internal link between acupoints and Zang-fu.The pathological reaction of Zang-fu can manifest as acupoint sensitization,while stimulation of acupoints can play a therapeutic role in the internal Zang-fu.Therefore,the acupoint has the functions of reflecting and treating diseases.This review explores the tender points on the body surface of patients with GU and the rules of acupoint selection.In addition,Zusanli(ST36),as one of the most used acupoints of the stomach meridian,was selected to show the mechanisms behind acupoint stimulation in the treatment of GU in greater detail,specifically in the well-studied model of the stress GU(SGU).Hence,the mechanisms of acupuncture at ST36 and points commonly used in combination with ST36 to treat SGU are discussed further.Treatment effects can be achieved through anti-inflammatory and antioxidant activities,gastric mucosal injury repair,and interaction with the brain-gut axis.In summary,this review provides evidence for a comprehensive understanding of the phenomena and mechanism of acupoint functions for GU.
基金supported by the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(Grant Nos.:ZZ16-YQ-037,JIPY2023003,and JJPY2022022)China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(Grant No.:CI2021A00601).
文摘In clinical practice,antibiotics have historically been utilized for the treatment of pathogenic bacteria.However,the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach.In 2022,Escherichia coli,a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence,emerged as the predominant pathogenic bacterium in China.The rapid emergence of antibiotic-resistant E.coli strains has rendered antibiotics insufficient to fight E.coli infections.Traditional Chinese medicine(TCM)has made remarkable contributions to the health of Chinese people for thousands of years,and its significant therapeutic effects have been proven in clinical practice.In this paper,we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E.coli infections.First of all,this review introduces the classification,antibiotic resistance characteristics and mechanisms of E.coli.Then,the TCM formulas and extracts are listed along with their active ingredients against E.coli,including extraction solution,minimum inhibitory concentration(MIC),and the antibacterial mechanisms.In addition,there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E.coli infections,and we provide a summary of this evidence and its underlying mechanisms.In conclusion,we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E.coli infections.We hold the opinion that TCM will play an important role in global health,pharmaceutical development,and livestock farming in the future.
基金supported by the National Key Research and Development Project(No.2023YFA1600082)the National Natural Science Foundation of China(Nos.U2141207,52001083,52171111)+3 种基金Natural Science Foundation of Heilongjiang(No.YQ2023E026)the Fundamental Research Funds for the Central Universities(No.3072022JIP1002)Key Laboratory Found of the Ministry of Industry and Information Technology(No.GXB202201)Youth Talent Project of China National Nuclear Corporation(No.CNNC2021YTEP-HEU01).
文摘How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
基金financially supported by the National Natural Science Foundation of China(No.52074356)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-06)+5 种基金the National Key R&D Program of China(No.2022YFC2904500)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1183)Changsha Science and Technology Project,China(Outstanding Innovative Youth Training Program)Innovation driven program of Central South University(No.2023CXQD002)National 111 Project(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University Project(No.50621747)。
文摘The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.