This study aims to investigate the intricate dynamic characteristics of the high-speed duct during the over-under Turbine-Based Combined Cycle(TBCC)inlet mode transition process while operating in an off-design state ...This study aims to investigate the intricate dynamic characteristics of the high-speed duct during the over-under Turbine-Based Combined Cycle(TBCC)inlet mode transition process while operating in an off-design state under throttled conditions.A typical over-under TBCC inlet,designed for a working Mach number range of 0–6 with a transition Mach number of 3.5,is examined through experimental studies in a supersonic wind tunnel with a freestream Mach number of2.9.The investigation focuses on the complex oscillatory flow and unique hysteresis observed in the mode transition process of the high-speed duct under the mildly throttled condition,utilizing highspeed schlieren and dynamic pressure acquisition system.The findings reveal that the high-speed duct undergoes four distinct oscillation stages akin to those in a higher throttled state during the mode transition,albeit with smaller dominant frequency and energy.Moreover,an irregular alternating“big/little buzz”mode is observed in the early stage of the large oscillation stage.Notably,the mildly throttled state exhibits three intriguing hysteresis properties compared to the unthrottled and higher throttled states.Firstly,hysteresis is observed in the shock train motion stage in the duct before unstart,along with the corresponding inverse process.Subsequently,hysteresis is noted in the unstart and restart of the high-speed duct,with a smaller hysteresis interval than in the unthrottled state.Finally,the hysteresis characteristics of oscillation mode switching and the corresponding inverse process are explored.Based on the analysis,the first two hysteresis phenomena are associated with the formation and dissipation of the separation bubble.The significant adverse pressure gradient constrains the cross-sectional capacity of the channel,rendering the disappearance of the separation bubble more challenging.The hysteresis in oscillation mode switching is linked to not only the channel cross-sectional capacity but also the state of the incoming boundary layer.展开更多
The utilization of Inlet Guide Vane (IGV) plays a key factor in affecting the instability evolution. Existing literature mainly focuses on the effect of IGV on instability inception that occurs in the rotor region. Ho...The utilization of Inlet Guide Vane (IGV) plays a key factor in affecting the instability evolution. Existing literature mainly focuses on the effect of IGV on instability inception that occurs in the rotor region. However, with the emergence of compressor instability starting from the stator region, the mechanism of various instability inceptions that occurs in different blade rows due to the change of IGV angles should be further examined. In this study, experiments were focused on three types of instability inceptions observed previously in a 1.5-stage axial flow compressor. To analyze the conversion of stall evolutions, the compressor rotating speed was set to 17 160 r/min, at which both the blade loading in the stator hub region and rotor tip region were close to the critical value before final compressor stall. Meanwhile, the dynamic test points with high-response were placed to monitor the pressures both at the stator trailing edges and rotor tips. The results indicate that the variation of reaction determines the region where initial instability occurs. Indeed, negative pre-rotation of the inlet guide vane leads to high-reaction, initiating stall disturbance from the rotor region. Positive pre-rotation results in low-reaction, initiating stall disturbance from the stator region. Furthermore, the type of instability evolution is affected by the radial loading distribution under different IGV angles. Specifically, a spike-type inception occurs at the rotor blade tip with a large angle of attack at the rotor inlet (−2°, −4° and −6°). Meanwhile, the critical total pressure ratio at the rotor tip is 1.40 near stall. As the angle of attack decreases, the stator blade loading reaches its critical boundary, with a value of approximately 1.35. At this moment, if the rotor tip maintains high blade loading similar to the stator hub, the partial surge occurs (0° and +2°);otherwise, the hub instability occurs (+4° and +6°).展开更多
To tackle the instability fault diagnosis challenges in wide-speed-range supersonic inlets,this study proposes an inlet fault decision fusion diagnosis algorithm based on attention mechanism feature fusion,achieving e...To tackle the instability fault diagnosis challenges in wide-speed-range supersonic inlets,this study proposes an inlet fault decision fusion diagnosis algorithm based on attention mechanism feature fusion,achieving efficient diagnosis of instability faults across wide-speed regimes.First,considering the requirement for wall pressure data extraction in mathematical modeling of wide-speed-range inlets,a supersonic inlet reference model is established for computational fluid dynamics(CFD)simulations.Second,leveraging data-driven modeling techniques and support vector machine(SVM)algorithms,a high-precision mathematical model covering wide-speed domains and incorporating instability mechanisms is rapidly developed using CFD-derived inlet wall pressure data.Subsequently,an inlet fault decision fusion diagnosis method is proposed.Pressure features are fused via attention mechanisms,followed by Dempster-Shafer(D-S)evidence theory-based decision fusion,which integrates advantages of multiple intelligent algorithms to overcome the limitations of single-signal diagnosis methods(low accuracy and constrained optimization potential).The simulation results demonstrate the effectiveness of the data-driven wide-speed-range inlet model in achieving high precision and rapid convergence.In addition,the fusion diagnosis algorithm has been shown to attain over 95%accuracy in the detection of instability,indicating an improvement of more than 5%compared to the accuracy of other single fault diagnosis algorithms.This enhancement effectively eliminates the occurrence of missed or false diagnoses,while demonstrates robust performance under operational uncertainties.展开更多
An experimental investigation is conducted to evaluate the performance and the stalling process of a fan subjected to inlet swirls,as well as the effectiveness of an Impedance Boundary-Controlled(IBC)Casing Treatment(...An experimental investigation is conducted to evaluate the performance and the stalling process of a fan subjected to inlet swirls,as well as the effectiveness of an Impedance Boundary-Controlled(IBC)Casing Treatment(CT)on the stall margin recovery.An operating cycle is proposed based on the hysteresis effect of harmonic flap oscillation of airfoils and parallel compressor theory to explain the pressure characteristic of the fan under twin swirl inlets.Twin swirls are observed to reduce the stall margin of the fan,and the circumferential location where the spike is detected turns to the intersection area of the twin swirl.The IBC CT is proven to extend the stall margin of the fan for 12.7%–22.3%when subjected to inlet swirls with an efficiency loss of around 1%.The IBC CT helps to reduce the size of the operating cycle of the fan by redistributing the blade loading and adding the system damping to dissipate the perturbation energy.展开更多
An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results ...An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
The application of higher bypass ratios and lower pressure ratios significantly reduces specific fuel consumption with the development of turbofan engines.However,it also increases the risk of flow separation at the i...The application of higher bypass ratios and lower pressure ratios significantly reduces specific fuel consumption with the development of turbofan engines.However,it also increases the risk of flow separation at the intake,leading to severe circumferential non-uniform inlet conditions.This study aimed to present an experimental investigation on instability evolutions of the compressor under circumferential non-uniform inlet conditions.Two stall inceptions regarding the different spatial scales and initial locations were selected to investigate this issue.The experiments were carried out on one tested rig,which the stall inceptions verified with the rotational speeds.At 65%design rotational speed(X),the stall inception was the spike,which was triggered by disturbances within serval pitches scale at the tip.Consequently,the spike-type stall inception was sensitive to circumferential distortion and led to a shrunk stall margin of the compressor.With the rotational speed increasing to 88%X,the stall inception switched to partial surge,which was induced by the flow blockage in the hub region around the full-annular.The results indicated that the partial surge was insusceptible to the circumferential distortion,which caused an extended stall margin with a lower stalled mass flow rate.In summary,the influence of distortion on the stability of the target compressor was found to be determined by the stall inception.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
The study presents an experimental exploration into the mode transition of an overunder TBCC(Turbine-Based Combined Cycle)inlet,with a specific emphasis on the flow characteristics at off-design transition Mach number...The study presents an experimental exploration into the mode transition of an overunder TBCC(Turbine-Based Combined Cycle)inlet,with a specific emphasis on the flow characteristics at off-design transition Mach number.A systematic investigation was undertaken into the mode transition characteristics in both unthrottled and throttled conditions within a highspeed duct,employing high speed Schlieren and dynamic pressure acquisition systems.The results show that the high-speed duct faced flow oscillations primarily dictated by the separation bubble near the duct entrance during the downward rotation of splitter,leading to the duct’s unstart under the unthrottled condition.During the splitter’s reverse rotation,a notable hysteresis of unstart/restart of the high-speed duct was observed.Conversely,hysteresis vanishes when the initial flowfield nears the critical state owing to downstream throttling.Moreover,the oscillatory diversity,a distinctive characteristic of the high-speed duct,was firstly observed during the mode transition induced by throttling.The flow evolution was divided into four stages:an initial instability stage characterized by low-frequency oscillations below 255 Hz induced by shock train self-excitation oscillation and high-frequency oscillations around 1367 Hz caused by the movement of separation bubble.This stage is succeeded by the“big buzz”phase,comprised of pressure accumulation/release within the overflow-free duct and shock motion outside the duct to retain dynamic flow balance.The dominant frequency escalated with the increase of the internal contraction ratio in the range of 280 Hz to 400 Hz.This was followed by a high-frequency oscillation stage around 453 Hz dominated by a large internal contraction ratio with low pulsating energy,accompanied by a continuous supersonic overflow.Lastly,as the splitter gradually intersected the boundary layer of the first-stage compression surface,the capture area and the turbulence intensity of the incoming flow underwent a sudden shift,leading to a more diverse flow oscillation within the duct,manifested as various forms of mixed buzz.展开更多
A modified small perturbation stability prediction model for axial compressors with circumferential inlet distortions is established and applied to investigate the effect of fore/aft-loaded rotor on compressor stabili...A modified small perturbation stability prediction model for axial compressors with circumferential inlet distortions is established and applied to investigate the effect of fore/aft-loaded rotor on compressor stability under circumferentially distorted inlet conditions.The inlet total pressure distribution downstream of the distortion screen is measured in experiments and employed for simulations which are implemented via time-space spectral method.The stall inception prediction results via the stability model indicate that the compressor with aft-loaded rotor not only performs better in terms of stability under uniform inlet,but also maintains a larger stability margin under circumferentially distorted inlet.The experiments for compressors with fore-loaded and aft-loaded rotor are respectively carried out.The results validate the reliability of numerical simulations and the predicted conclusion that the aft-loaded rotor is beneficial for compressor stability.Besides,the ability of the developed theoretical model for compressor stability prediction under circumferential distortions is confirmed.In addition,dynamic pressure signals at rotor tip measured in experiments illustrate that the circumferential distortion has little effect on the compressor stall pattern.展开更多
This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO...This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.展开更多
The structure of the concave-convex plates has proven to be crucial in optimizing the internal flow characteristics of the electrolyzer for hydrogen production.This paper investigates the impact of the gradual expansi...The structure of the concave-convex plates has proven to be crucial in optimizing the internal flow characteristics of the electrolyzer for hydrogen production.This paper investigates the impact of the gradual expansion angle of the inlet channel on the internal flow field of alkaline electrolyzers.The flow distribution characteristics of concave-convex plates with different inlet angle structures in the electrolytic cell is discussed.Besides,the system with internal heat source is studied.The results indicate that a moderate gradual expansion angle is beneficial for enhancing fluid uniformity.However,an excessively large gradual expansion angle may lead to adverse reflux phenomena,reducing the overall performance of the electrolytic cell.展开更多
A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technolog...A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technology of stream tracing and shock cutting.Comparison between the newly designed inlet and a typical sidewall compression inlet is given.The design Mach number and entrance shape of this new inlet are chosen according to the sidewall compression inlet.Numerical results show that most of the performance parameters of the internal waverider inlet are a bit higher than the sidewall inlet,such as the flow capture coefficient,total pressure recovery and the kinetic efficiency.The performances of these two inlets at off-design points are compared.The internal waverider inlet can capture more than 91% of incoming flow under all simulated conditions.Results show that internal waverider inlet using 3-D compression and high flow capture coefficient is a kind of fixed-geometry inlet with better performance.展开更多
An experimental study of the flow in a helicopter inlet with front output shaft and partial flow dynamic head is conducted in low speed wind tunnel. The flow characters of the inlet in the range of the yaw angle from ...An experimental study of the flow in a helicopter inlet with front output shaft and partial flow dynamic head is conducted in low speed wind tunnel. The flow characters of the inlet in the range of the yaw angle from 0~135°are presented in this paper. The static pressure distributions along the duct, distortions of the flow field at the outlet section and total pressure recovery coefficients are measured and analyzed. The results show that this type of inlet has high total pressure recovery coefficients at a wide range of yaw angle. The regions of local flow separation and distortion are closely related to the yaw angle. It′s also found that the outlet section has the best characteristics at sideslip, and sharply deteriorated characteristics at the yawed flight with a yaw angle of more than 90°展开更多
Numerical simulations and experiments showed that bump inlet had a remarkable effect on boundary layer diversion of supersonic flow.However,the design and analysis of bump in hypersonic flow was still few.In this pape...Numerical simulations and experiments showed that bump inlet had a remarkable effect on boundary layer diversion of supersonic flow.However,the design and analysis of bump in hypersonic flow was still few.In this paper,the mechanism of a supersonic bump inlet is introduced to the design of hypersonic forebody.A hypersonic inlet with an integrated bump/forebody is obtained by the Method Of Characteristics(MOC)based on a chin inlet.Numerical simulations show that the modified inlet achieves diversion of low-speed flow.Besides,the integrated bump/-forebody is also beneficial to inlet start.During the starting process,the shape of the separation zone is rebuilt by the modified forebody surface which makes spillage much easier.This new design leads to a reduction of the self-start Mach number by 0.95.展开更多
Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top...Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen.展开更多
Intensive studies have been carried out on generations of waverider geometry and hypersonic inlet geometry. However, integration efforts of waverider and related air-intake system are restricted majorly around the X43...Intensive studies have been carried out on generations of waverider geometry and hypersonic inlet geometry. However, integration efforts of waverider and related air-intake system are restricted majorly around the X43A-like or conical flow field induced configuration, which adopts mainly the two-dimensional air-breathing technology and limits the judicious visions of developing new aerodynamic profiles for hypersonic designers. A novel design approach for integrating the inward turning inlet with the traditional parameterized waverider is proposed. The proposed method is an alternative means to produce a compatible configuration by linking the off-the-shelf results on both traditional waverider techniques and inward turning inlet techniques. A series of geometry generations and optimization solutions is proposed to enhance the lift-to-drag ratio. A quantitative but efficient aerodynamic performance evaluation approach (the hypersonic flow panel method) with lower computational cost is employed to play the role of objective function for opti- mization purpose. The produced geometry compatibility with a computational fluid dynamics (CFD) solver is also verified for detailed flow field investigation. Optimization results and other numerical validations are obtained for the feasibility demonstration of the proposed method.展开更多
The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selec...The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.展开更多
Experimental investigations are conducted on an axisymmetric hypersonic inlet to evaluate the effects of trips on oscillatory flows. The model exit is throttled with a fixed block to generate oscillatory flows at a fr...Experimental investigations are conducted on an axisymmetric hypersonic inlet to evaluate the effects of trips on oscillatory flows. The model exit is throttled with a fixed block to generate oscillatory flows at a freestream Mach number of 6 in a conventional wind tunnel and a shock tunnel. Schlieren imaging and pressure measurements are adopted to record unsteady flow features.Results indicate that trips with a 1 mm thickness prominently suppress external separations, shorten oscillatory cycles, and modify pressure magnitudes. Trips can reduce the upstream movement ranges of separated shocks from nose regions to locations axially 142 mm downstream. The oscillatory cycles are shortened from 3.75 ms to 3.25 ms and from 4 ms to 3.13 ms in two facilities.Tripped cases generally exhibit higher pressure magnitudes than those of untripped cases, of which the increment is up to 21 times the freestream static pressure for the farthest downstream transducer in the shock tunnel. The effects of trips are related to the streamwise vortexes in wake flows, in which interactions between external separations modify the separated flow patterns and enhance the sustainment of the forebody boundary layers to backpressure. Flow processes causing increments of oscillatory frequencies and pressure magnitudes are analyzed, while the flow mechanisms dominating the processes still need to be clarified in the future.展开更多
There exists inlet-engine match conflict between high and low speeds for a non-adjustable bump inlet.A scheme of using a bistable bump surface at the throat region of the inlet is proposed to adjust the throat area.Th...There exists inlet-engine match conflict between high and low speeds for a non-adjustable bump inlet.A scheme of using a bistable bump surface at the throat region of the inlet is proposed to adjust the throat area.The FEM model of the bistable surface is established with hinged constraint,and the bistability condition and structural transition process are investigated in detail.Moreover,the effects of loading method,loading position and structural parameters on critical driving force,input energy and structural strain are studied.Finally,the influences of an elastic boundary condition on the structural bistability are discussed.The results show that the bistability of the adjustable bump surface requires a certain boundary constraint and geometric parameter combination,and that there are local and overall snap-through phenomena during transition which are related to the loading position and structural parameters.Therefore,suitable loading position and structural material could reduce input energy and meet the demand of structural strain.展开更多
基金funded by the National Natural Science Foundation of China(Nos.12025202,U20A2070,12172175)the National Science and Technology Major Project,China(No.J2019-Ⅱ-0014-0035)+2 种基金the Postdoctoral Fellowship Program of CPSF,China(No.GZB20230970)the Science Center for Gas Turbine Project,China(Nos.P2022-C-II-002-001,P2022-A-II-002-001)the Young Scientific and Technological Talents Project of Jiangsu Association for Science and Technology,China(No.TJ-2021-052)。
文摘This study aims to investigate the intricate dynamic characteristics of the high-speed duct during the over-under Turbine-Based Combined Cycle(TBCC)inlet mode transition process while operating in an off-design state under throttled conditions.A typical over-under TBCC inlet,designed for a working Mach number range of 0–6 with a transition Mach number of 3.5,is examined through experimental studies in a supersonic wind tunnel with a freestream Mach number of2.9.The investigation focuses on the complex oscillatory flow and unique hysteresis observed in the mode transition process of the high-speed duct under the mildly throttled condition,utilizing highspeed schlieren and dynamic pressure acquisition system.The findings reveal that the high-speed duct undergoes four distinct oscillation stages akin to those in a higher throttled state during the mode transition,albeit with smaller dominant frequency and energy.Moreover,an irregular alternating“big/little buzz”mode is observed in the early stage of the large oscillation stage.Notably,the mildly throttled state exhibits three intriguing hysteresis properties compared to the unthrottled and higher throttled states.Firstly,hysteresis is observed in the shock train motion stage in the duct before unstart,along with the corresponding inverse process.Subsequently,hysteresis is noted in the unstart and restart of the high-speed duct,with a smaller hysteresis interval than in the unthrottled state.Finally,the hysteresis characteristics of oscillation mode switching and the corresponding inverse process are explored.Based on the analysis,the first two hysteresis phenomena are associated with the formation and dissipation of the separation bubble.The significant adverse pressure gradient constrains the cross-sectional capacity of the channel,rendering the disappearance of the separation bubble more challenging.The hysteresis in oscillation mode switching is linked to not only the channel cross-sectional capacity but also the state of the incoming boundary layer.
基金support of the National Natural Science Foundation of China(No.52322603)the Science Center for Gas Turbine Project of China(Nos.P2022-B-II-004-001 and P2023-B-II-001-001)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Beijing Nova Program of China(Nos.20220484074 and 20230484479).
文摘The utilization of Inlet Guide Vane (IGV) plays a key factor in affecting the instability evolution. Existing literature mainly focuses on the effect of IGV on instability inception that occurs in the rotor region. However, with the emergence of compressor instability starting from the stator region, the mechanism of various instability inceptions that occurs in different blade rows due to the change of IGV angles should be further examined. In this study, experiments were focused on three types of instability inceptions observed previously in a 1.5-stage axial flow compressor. To analyze the conversion of stall evolutions, the compressor rotating speed was set to 17 160 r/min, at which both the blade loading in the stator hub region and rotor tip region were close to the critical value before final compressor stall. Meanwhile, the dynamic test points with high-response were placed to monitor the pressures both at the stator trailing edges and rotor tips. The results indicate that the variation of reaction determines the region where initial instability occurs. Indeed, negative pre-rotation of the inlet guide vane leads to high-reaction, initiating stall disturbance from the rotor region. Positive pre-rotation results in low-reaction, initiating stall disturbance from the stator region. Furthermore, the type of instability evolution is affected by the radial loading distribution under different IGV angles. Specifically, a spike-type inception occurs at the rotor blade tip with a large angle of attack at the rotor inlet (−2°, −4° and −6°). Meanwhile, the critical total pressure ratio at the rotor tip is 1.40 near stall. As the angle of attack decreases, the stator blade loading reaches its critical boundary, with a value of approximately 1.35. At this moment, if the rotor tip maintains high blade loading similar to the stator hub, the partial surge occurs (0° and +2°);otherwise, the hub instability occurs (+4° and +6°).
基金supported by the Na tional Natural Science Foundation of China(No.62373185)the National Key R&D Program of China(No.2023YFB3307100).
文摘To tackle the instability fault diagnosis challenges in wide-speed-range supersonic inlets,this study proposes an inlet fault decision fusion diagnosis algorithm based on attention mechanism feature fusion,achieving efficient diagnosis of instability faults across wide-speed regimes.First,considering the requirement for wall pressure data extraction in mathematical modeling of wide-speed-range inlets,a supersonic inlet reference model is established for computational fluid dynamics(CFD)simulations.Second,leveraging data-driven modeling techniques and support vector machine(SVM)algorithms,a high-precision mathematical model covering wide-speed domains and incorporating instability mechanisms is rapidly developed using CFD-derived inlet wall pressure data.Subsequently,an inlet fault decision fusion diagnosis method is proposed.Pressure features are fused via attention mechanisms,followed by Dempster-Shafer(D-S)evidence theory-based decision fusion,which integrates advantages of multiple intelligent algorithms to overcome the limitations of single-signal diagnosis methods(low accuracy and constrained optimization potential).The simulation results demonstrate the effectiveness of the data-driven wide-speed-range inlet model in achieving high precision and rapid convergence.In addition,the fusion diagnosis algorithm has been shown to attain over 95%accuracy in the detection of instability,indicating an improvement of more than 5%compared to the accuracy of other single fault diagnosis algorithms.This enhancement effectively eliminates the occurrence of missed or false diagnoses,while demonstrates robust performance under operational uncertainties.
基金supported by the National Natural Science Foundation of China(Nos.52306035 and 52325602)the Science Center for Gas Turbine Project,China(Nos.P2022-A-II-002-001 and P2022-C-II-003-001)+1 种基金the National Science and Technology Major Project,China(Nos.Y2022-II-0002-0005 and Y2022-II-0003-0006)the Key Laboratory of Pre-Research Management Centre,China(No.6142702200101)。
文摘An experimental investigation is conducted to evaluate the performance and the stalling process of a fan subjected to inlet swirls,as well as the effectiveness of an Impedance Boundary-Controlled(IBC)Casing Treatment(CT)on the stall margin recovery.An operating cycle is proposed based on the hysteresis effect of harmonic flap oscillation of airfoils and parallel compressor theory to explain the pressure characteristic of the fan under twin swirl inlets.Twin swirls are observed to reduce the stall margin of the fan,and the circumferential location where the spike is detected turns to the intersection area of the twin swirl.The IBC CT is proven to extend the stall margin of the fan for 12.7%–22.3%when subjected to inlet swirls with an efficiency loss of around 1%.The IBC CT helps to reduce the size of the operating cycle of the fan by redistributing the blade loading and adding the system damping to dissipate the perturbation energy.
基金National Basic Research Program of China (5130802)
文摘An investigation on the ventral diverterless high offset S-shaped inlet is carried out at Mach numbers from 0.600 to 1.534, angles of attack from -4° to 9.4°, and yaw angles from 0° to 8°. Results indicate: (1) a large region of low total pressure exists at the lower part of the inlet exit caused by the counter-rotating vortices in the S-shaped duct; (2) the performances of the inlet at Mach number 1.000 reach almost the highest, so the propulsion system could work efficiently in terms of aerodynamics; (3) the total pressure recovery increases slowly at first and then remains unvaried as the Mach number rises from 0.6 to 1.0, however, it does in an opposite manner in the conventional diverter-equipped S-shaped inlet; (4) the performances of the inlet are generally insensitive to angles of attack from -4° to 9.4° and yaw angles from 0° to 8° at Mach number 0.850, and angles of attack from -2° to 6° and yaw angles from 0° to 5° at Mach number 1.534.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
基金support of the National Natural Science Foundation of China(Nos.52322603,51976005,52006002,and 51906005)the Science Center for Gas Turbine Project,China(No.P2022-B-II-004-001)+5 种基金the Advanced Jet Propulsion Creativity Center,AEAC,China(No.HKCX2020-02-013)the National Science and Technology Major Project,China(No.2017-Ⅱ-0005-0018)the Fundamental Research Funds for the Central Universities,China(No.501XTCX2023146001)the Beijing Nova Program,China(No.20220484074)the Beijing Municipal Natural Science Foundation,China(No.3242016)the Collaborative Innovation Center for Advanced Aero-Engines,China。
文摘The application of higher bypass ratios and lower pressure ratios significantly reduces specific fuel consumption with the development of turbofan engines.However,it also increases the risk of flow separation at the intake,leading to severe circumferential non-uniform inlet conditions.This study aimed to present an experimental investigation on instability evolutions of the compressor under circumferential non-uniform inlet conditions.Two stall inceptions regarding the different spatial scales and initial locations were selected to investigate this issue.The experiments were carried out on one tested rig,which the stall inceptions verified with the rotational speeds.At 65%design rotational speed(X),the stall inception was the spike,which was triggered by disturbances within serval pitches scale at the tip.Consequently,the spike-type stall inception was sensitive to circumferential distortion and led to a shrunk stall margin of the compressor.With the rotational speed increasing to 88%X,the stall inception switched to partial surge,which was induced by the flow blockage in the hub region around the full-annular.The results indicated that the partial surge was insusceptible to the circumferential distortion,which caused an extended stall margin with a lower stalled mass flow rate.In summary,the influence of distortion on the stability of the target compressor was found to be determined by the stall inception.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
基金funded by the National Natural Science Foundation of China(Nos.12025202,U20A2070 and 12172175)the National Science and Technology Major Project,China(No.J2019-Ⅱ-0014-0035)+2 种基金the Postdoctoral Fellowship Program of CPSF,China(No.GZB20230970)the Science Center for Gas Turbine Project,China(Nos.P2022-C-Ⅱ-002-001 and P2022-A-Ⅱ-002-001)the Young Scientific and Technological Talents Project of Jiangsu Association for Science and Technology,China(No.TJ-2021-052).
文摘The study presents an experimental exploration into the mode transition of an overunder TBCC(Turbine-Based Combined Cycle)inlet,with a specific emphasis on the flow characteristics at off-design transition Mach number.A systematic investigation was undertaken into the mode transition characteristics in both unthrottled and throttled conditions within a highspeed duct,employing high speed Schlieren and dynamic pressure acquisition systems.The results show that the high-speed duct faced flow oscillations primarily dictated by the separation bubble near the duct entrance during the downward rotation of splitter,leading to the duct’s unstart under the unthrottled condition.During the splitter’s reverse rotation,a notable hysteresis of unstart/restart of the high-speed duct was observed.Conversely,hysteresis vanishes when the initial flowfield nears the critical state owing to downstream throttling.Moreover,the oscillatory diversity,a distinctive characteristic of the high-speed duct,was firstly observed during the mode transition induced by throttling.The flow evolution was divided into four stages:an initial instability stage characterized by low-frequency oscillations below 255 Hz induced by shock train self-excitation oscillation and high-frequency oscillations around 1367 Hz caused by the movement of separation bubble.This stage is succeeded by the“big buzz”phase,comprised of pressure accumulation/release within the overflow-free duct and shock motion outside the duct to retain dynamic flow balance.The dominant frequency escalated with the increase of the internal contraction ratio in the range of 280 Hz to 400 Hz.This was followed by a high-frequency oscillation stage around 453 Hz dominated by a large internal contraction ratio with low pulsating energy,accompanied by a continuous supersonic overflow.Lastly,as the splitter gradually intersected the boundary layer of the first-stage compression surface,the capture area and the turbulence intensity of the incoming flow underwent a sudden shift,leading to a more diverse flow oscillation within the duct,manifested as various forms of mixed buzz.
基金The research presented here was supported by the National Natural Science Foundation of China(Nos.52306036 and 52325602)the Science Center for Gas Turbine Project,China(Nos.P2022-A-II-002-001 and P2022-C-II-003-001)+3 种基金the Project funded by China Postdoctoral Science Foundation(No.2022M720346)the National Science and Technology Major Projectc,China(Nos.Y2022-II-0003-0006 and Y2022-II-0002-0005)Also,the research is supported by the Key Laboratory of Pre-Research Management Centre,China(No.6142702200101)the Fundamental Research Funds for the Central Universities,China(Nos.YWF-23-Q-1009 and YWF-23-Q-1065).
文摘A modified small perturbation stability prediction model for axial compressors with circumferential inlet distortions is established and applied to investigate the effect of fore/aft-loaded rotor on compressor stability under circumferentially distorted inlet conditions.The inlet total pressure distribution downstream of the distortion screen is measured in experiments and employed for simulations which are implemented via time-space spectral method.The stall inception prediction results via the stability model indicate that the compressor with aft-loaded rotor not only performs better in terms of stability under uniform inlet,but also maintains a larger stability margin under circumferentially distorted inlet.The experiments for compressors with fore-loaded and aft-loaded rotor are respectively carried out.The results validate the reliability of numerical simulations and the predicted conclusion that the aft-loaded rotor is beneficial for compressor stability.Besides,the ability of the developed theoretical model for compressor stability prediction under circumferential distortions is confirmed.In addition,dynamic pressure signals at rotor tip measured in experiments illustrate that the circumferential distortion has little effect on the compressor stall pattern.
文摘This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality(IAQ),heat,and temperature distribution in mixed convection within a two-dimensional square cavityfilled with an air-CO_(2)mixture.The air-CO_(2)mixture enters the cavity through two inlet openings positioned at the top wall,which is set at the ambient temperature(TC).Three values of the Reynolds numbers,ranging from 1000 to 2000,are considered,while the Prandtl number is kept constant(Pr=0.71).The temperature distribution and streamlines are shown for Rayleigh number(Ra)equal to 104,three inlet inclination anglesϕ(0,π/6 andπ/4)and three CO_(2)concentrations values(1500,2500,3500 ppm)applied at both hot vertical walls(maintained at a constant temperature TH).Afinite volume method is used under the assumption of two-dimensional laminarflow to solve the NavierStokes and energy equations.The results indicate that inlet inclination angle has an impact on the indoor air quality(IAQ),which,in turn,affects the heat transfer distribution and thermal comfort within the cavity.
基金supported by Science and Technology Projects of Gansu,China(No.22ZD6GA014).
文摘The structure of the concave-convex plates has proven to be crucial in optimizing the internal flow characteristics of the electrolyzer for hydrogen production.This paper investigates the impact of the gradual expansion angle of the inlet channel on the internal flow field of alkaline electrolyzers.The flow distribution characteristics of concave-convex plates with different inlet angle structures in the electrolytic cell is discussed.Besides,the system with internal heat source is studied.The results indicate that a moderate gradual expansion angle is beneficial for enhancing fluid uniformity.However,an excessively large gradual expansion angle may lead to adverse reflux phenomena,reducing the overall performance of the electrolytic cell.
文摘A new internal waverider inlet with a rectangular shape of entrance and exit in front view is designed at Ma=6.0.The design is based on a better basic flowfield ICFC than traditional one and derived with the technology of stream tracing and shock cutting.Comparison between the newly designed inlet and a typical sidewall compression inlet is given.The design Mach number and entrance shape of this new inlet are chosen according to the sidewall compression inlet.Numerical results show that most of the performance parameters of the internal waverider inlet are a bit higher than the sidewall inlet,such as the flow capture coefficient,total pressure recovery and the kinetic efficiency.The performances of these two inlets at off-design points are compared.The internal waverider inlet can capture more than 91% of incoming flow under all simulated conditions.Results show that internal waverider inlet using 3-D compression and high flow capture coefficient is a kind of fixed-geometry inlet with better performance.
文摘An experimental study of the flow in a helicopter inlet with front output shaft and partial flow dynamic head is conducted in low speed wind tunnel. The flow characters of the inlet in the range of the yaw angle from 0~135°are presented in this paper. The static pressure distributions along the duct, distortions of the flow field at the outlet section and total pressure recovery coefficients are measured and analyzed. The results show that this type of inlet has high total pressure recovery coefficients at a wide range of yaw angle. The regions of local flow separation and distortion are closely related to the yaw angle. It′s also found that the outlet section has the best characteristics at sideslip, and sharply deteriorated characteristics at the yawed flight with a yaw angle of more than 90°
文摘Numerical simulations and experiments showed that bump inlet had a remarkable effect on boundary layer diversion of supersonic flow.However,the design and analysis of bump in hypersonic flow was still few.In this paper,the mechanism of a supersonic bump inlet is introduced to the design of hypersonic forebody.A hypersonic inlet with an integrated bump/forebody is obtained by the Method Of Characteristics(MOC)based on a chin inlet.Numerical simulations show that the modified inlet achieves diversion of low-speed flow.Besides,the integrated bump/-forebody is also beneficial to inlet start.During the starting process,the shape of the separation zone is rebuilt by the modified forebody surface which makes spillage much easier.This new design leads to a reduction of the self-start Mach number by 0.95.
文摘Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen.
基金supported by the National Natural Science Foundation of China (Grant No.61004089)
文摘Intensive studies have been carried out on generations of waverider geometry and hypersonic inlet geometry. However, integration efforts of waverider and related air-intake system are restricted majorly around the X43A-like or conical flow field induced configuration, which adopts mainly the two-dimensional air-breathing technology and limits the judicious visions of developing new aerodynamic profiles for hypersonic designers. A novel design approach for integrating the inward turning inlet with the traditional parameterized waverider is proposed. The proposed method is an alternative means to produce a compatible configuration by linking the off-the-shelf results on both traditional waverider techniques and inward turning inlet techniques. A series of geometry generations and optimization solutions is proposed to enhance the lift-to-drag ratio. A quantitative but efficient aerodynamic performance evaluation approach (the hypersonic flow panel method) with lower computational cost is employed to play the role of objective function for opti- mization purpose. The produced geometry compatibility with a computational fluid dynamics (CFD) solver is also verified for detailed flow field investigation. Optimization results and other numerical validations are obtained for the feasibility demonstration of the proposed method.
文摘The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.
基金co-supported by the China Postdoctoral Science Foundation (No. 2017M612059)the Fundamental Research Funds for the Central Universities of China (JZ2015HGBZ0471)the National Natural Science Foundation of China (Nos. 11402263 and 11132010)
文摘Experimental investigations are conducted on an axisymmetric hypersonic inlet to evaluate the effects of trips on oscillatory flows. The model exit is throttled with a fixed block to generate oscillatory flows at a freestream Mach number of 6 in a conventional wind tunnel and a shock tunnel. Schlieren imaging and pressure measurements are adopted to record unsteady flow features.Results indicate that trips with a 1 mm thickness prominently suppress external separations, shorten oscillatory cycles, and modify pressure magnitudes. Trips can reduce the upstream movement ranges of separated shocks from nose regions to locations axially 142 mm downstream. The oscillatory cycles are shortened from 3.75 ms to 3.25 ms and from 4 ms to 3.13 ms in two facilities.Tripped cases generally exhibit higher pressure magnitudes than those of untripped cases, of which the increment is up to 21 times the freestream static pressure for the farthest downstream transducer in the shock tunnel. The effects of trips are related to the streamwise vortexes in wake flows, in which interactions between external separations modify the separated flow patterns and enhance the sustainment of the forebody boundary layers to backpressure. Flow processes causing increments of oscillatory frequencies and pressure magnitudes are analyzed, while the flow mechanisms dominating the processes still need to be clarified in the future.
基金supported by the National Natural Science Foundation of China(Nos.11172128,51475228)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20123218110001)+1 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanics Structures (Nanjing University of Aeronautics and Astronautics)(No.0515G01)the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Funding of Jiangsu Innovation Program for Graduate Education(the Fundamental Research Funds for the Central Universities)(No.CXZZ12_ 0139)
文摘There exists inlet-engine match conflict between high and low speeds for a non-adjustable bump inlet.A scheme of using a bistable bump surface at the throat region of the inlet is proposed to adjust the throat area.The FEM model of the bistable surface is established with hinged constraint,and the bistability condition and structural transition process are investigated in detail.Moreover,the effects of loading method,loading position and structural parameters on critical driving force,input energy and structural strain are studied.Finally,the influences of an elastic boundary condition on the structural bistability are discussed.The results show that the bistability of the adjustable bump surface requires a certain boundary constraint and geometric parameter combination,and that there are local and overall snap-through phenomena during transition which are related to the loading position and structural parameters.Therefore,suitable loading position and structural material could reduce input energy and meet the demand of structural strain.