期刊文献+
共找到3,386篇文章
< 1 2 170 >
每页显示 20 50 100
Shifts in phytoplankton communities in inland waterways:Insights from the Beijing-Hangzhou Grand Canal,China
1
作者 Xueru Mao Lin Zhu +3 位作者 Boyi Liu Chenjun Zeng Huijian Yang Wenqing Shi 《River》 2025年第1期36-43,共8页
Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow ... Phytoplankton play a crucial role in maintaining the health of river ecosystems,and their communities are closely linked to river hydrodynamics.In inland waterways,disturbances generated by ship propellers alter flow dynamics and may affect phytoplankton communities.To clarify it,phytoplankton communities in the Zhenjiang section of the Beijing-Hangzhou Grand Canal(BHGC)in China,the world's longest canal,were studied and compared them with its undisturbed tributaries.The results revealed major alternations in seasonal patterns of phytoplankton communities in the BHGC,shifting the peak of phytoplankton density from spring to autumn and the lowest diversity from summer to autumn.Ship disturbances increased water turbidity and created optimal N/P ratios,which provided Cyanobacteria with a competitive advantage in autumn.The proliferation of Cyanobacteria resulted in a phytoplankton density in the BHGC,exceeding that in the tributaries by more than tenfold,accompanied by a decrease in diversity to its lowest level.Due to habitat alterations,functional groups emerged that are resilient to strong disturbances and high turbidity.The findings add to the understanding of the impact of ship traffic on river ecosystems. 展开更多
关键词 functional group inland waterway N/P ratio PHYTOPLANKTON ship traffic TURBIDITY
在线阅读 下载PDF
A review of altimetry waveform retracking for inland water levels
2
作者 Xinyuan Deng Linghong Ke +4 位作者 Liguang Jiang Karina Nielsen Xiaomei Fan Jida Wang Chunqiao Song 《Geodesy and Geodynamics》 2025年第4期488-508,共21页
Reliable surface height observations over inland water bodies are useful for understanding the hydrological cycle.Satellite radar altimetry particularly contributed with its long-term archive and minimal cloud interfe... Reliable surface height observations over inland water bodies are useful for understanding the hydrological cycle.Satellite radar altimetry particularly contributed with its long-term archive and minimal cloud interference.Specialized inland water altimetry,developed from oceanography and geodesy,is still being extensively investigated.By synthesizing pioneering studies on“retracking algorithms”,this review demonstrates,from a user perspective,why optimizing conventional retracking is still important and how it can extend reliable historical water level retrieval over more ungauged sites.Numerous unrevealed inland water bodies have small sizes or complex surroundings,posing challenges to maintaining accuracy.Applications have shown that a critical key lies in the retracking correction during range retrieval(uncertainty likely on the order of meters),compared with other corrections(on the order of centimeters or decimeters).From multiple uncertainty factors in range retrieval,signal entanglements from land contamination and off-nadir effects are core issues.We evaluate and compared key strategies from prototype retrackers to improved retrackers,especially the empirical ones optimized for inland waters.Sub-waveform extraction and adjustment for Delay-Doppler modes has advanced range retrieval to a new stage.Four innovative inland-water-compatible retrackers are introduced in detail,with a highlight on their distinct approaches to robustly improve performance.Considering the selection of different data and retrackers in varying scenarios,a synthesis analysis is conducted based on results reported in previous literature.In conclusion,the empirical retracking has been enhanced to offer stable decimeter-level accuracy in intricate landscapes(e.g.,small lakes and rivers with varied surroundings).In comparison,the physical retracking has been upgraded to provide greater precision for homogeneous surface in large lakes.For future inland water altimetry,we articulate how additionally retracked results can benefit hydrological applications,and what difficulties would arise when extending study scales. 展开更多
关键词 Remote sensing inland water ALTIMETRY Range retrieval RETRACKING
原文传递
Atmospheric chemistry of the coastal area is influenced by the convergence between the inland and marine air:Insight into carbonyl compounds
3
作者 Jinhe Wang Ouyang Li +7 位作者 Pengcheng Zhang Xue Yang Ravi Yadav Shan Chen Yuhong Liu Chao Zhu Yangang Ren Abdelwahid Mellouki 《Journal of Environmental Sciences》 2025年第8期859-870,共12页
Marine biological activity has long been recognized to impact the atmospheric chemistry of coastal areas.In this work,we monitored the seasonal variation of carbonyl compounds in the coastal city of Qingdao,located in... Marine biological activity has long been recognized to impact the atmospheric chemistry of coastal areas.In this work,we monitored the seasonal variation of carbonyl compounds in the coastal city of Qingdao,located in the north of China’s coastline and the south of Jiaodong Peninsula,with the vast hinterland in the west.The mean total concentration of the 15 carbonyls varied significantly between seasons,with the highest observed in autumn(10.2±6.2 ppbv),followed by spring(9.0±3.0 ppbv),winter(6.4±4.0 ppbv)and summer(3.4±1.4 ppbv).Using bivariate analysis,the agricultural emissions from inland areas were responsible for the high levels of carbonyls in the autumn.In summer,clean and humid sea winds helped reduce the concentration of carbonyls,but they also brought air masses from vegetation,and marine organisms,which contributed to high levels of carbonyls in the spring of coastal areas.The observation-based chemistry box model found that the forma-tion of formaldehyde and acetaldehyde was primarily controlled by the RO+O2 reaction,and alkenes oxidation was the main contributing factor.Based on the OH radical loss rate(LOH)and ozone formation potential(OFP)calculation,we found that autumn and spring seasons have significantly higher values of LOH and OFP than winter and summer due to the presence of high concentrations of carbonyl compounds.Therefore,it is believed that these carbonyl compounds primarily originate from agricultural activities,and marine air influences the atmospheric chemistry of the coastal areas. 展开更多
关键词 Atmospheric chemistry Coastal area Carbonyl compounds inland agricultural activity Marine air mass
原文传递
Comprehensive optimization of ecological network in inland river basin from the perspective of future development:A case study of Shiyang River,China
4
作者 AoKang Xu XiangYun Meng Jing Shi 《Research in Cold and Arid Regions》 2025年第1期43-54,共12页
Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland ... Ecological network(EN)identification and optimization is an essential research tool for safeguarding regional ecological security patterns and planning territorial space.Especially for the ecologically fragile inland river basins,EN optimization is of significance in ensuring regional ecological security and virtuous cycle of ecosystems.In addition,EN is a dynamically changing structural system that is more applicable to the regional development by optimizing it from comprehensive future development perspective.EN of Shiyang River basin was constructed on account of the circuit theory,and land use/cover changes(LUCC)of the basin in 2035 was predicted by PLUS model,so as to explore the ecological conservation priorities and formulate optimization strategies.54 ecological sources(ESs)were identified,covering an area of 12,198 km^(2),mainly in the southern basin.133 ecological corridors(ECs)with an area of 3,176.92 km^(2)were extracted.38 ecological pinchpoints(EPs)and 22 ecological barriers(EBs)were identified respectively,which were mainly distributed in the lower basin.To effectively enhance the connectivity of EN in Minqin County,which has the worst ecological environment,we added five stepping stones based on the Ant Forest project.In addition,the optimal EPS is selected according to the development and limitation needs of inland river basins and the threat degree of warning points(WPs)under different scenarios.Scientific and reasonable optimization of future urban layout to prevent WPs can effectively alleviate the contradiction between ecological protection and economic development.The study is intended to provide basis for ecological sustainable development and rational planning territorial space in Shiyang River basin,as well as opinion for EN optimization in inland river basin. 展开更多
关键词 Ecological network Scenario simulation Future development perspective inland river basin
在线阅读 下载PDF
Exploring the topographical pattern beneath the water surface: Global bathymetric volume-area-height curves(BVAH) of inland surface water bodies
5
作者 Siyu Zhu Wei Wan +15 位作者 Guoqing Zhang Zhaoyuan Yao Yue Xu Baojian Liu Zhizhou Guo Zengliang Luo Wentao Xiong Rui Ji Qingwen Ji Yu He Feng Lv Weizhen Fang Xiao Tan Qian Huang Lei Xiao Huan Li 《Geodesy and Geodynamics》 EI CSCD 2024年第6期602-615,共14页
Global inland surface water bodies such as lakes and reservoirs,important components of the hydrosphere and ecosphere,are increasingly affected by climate change.Generating bathymetric volume-areaheight (BVAH) curves ... Global inland surface water bodies such as lakes and reservoirs,important components of the hydrosphere and ecosphere,are increasingly affected by climate change.Generating bathymetric volume-areaheight (BVAH) curves for global inland surface water bodies can enhance our understanding of their topography and climate impacts.However,accurately quantifying the topographic patterns of these water bodies remains challenging due to the difficulties in collecting comprehensive bathymetric data.Therefore,we collected and processed over 2000 bathymetric maps of global water bodies from over 50 different data sources and then developed the BVAH model.Finally,the BVAH hydrological curves of 16671 global inland surface water bodies (larger than 10 km~2) were generated.The results include but are not limited to (1) For most targeted water bodies,area (A) and volume (V) exhibit significant power function relationships with surface heights (H),with optimal power values quantified as 1.42 for A and 2.42 for V.(2) The BVAH model outperforms GLOBathy in estimating area and volume changes,achieving higher correlation coefficients (CC) of approximately 0.962 for the area and 0.991 for volume,and demonstrating lower percentages of root mean squared errors (PRMSE) around 10.9% for the area and 4.8% for volume.(3) In the case study of the Xizang Plateau and various large global reservoirs,the BVAH curve database can capture dynamic volume changes.As a unified simulation of the bathymetric topographical patterns,our bathymetric dataset and corresponding BVAH curve database have great potential to contribute to effective water resource management and ecological conservation efforts worldwide. 展开更多
关键词 Global inland water bodies Hydrological curves Bathymetric map Climate change
原文传递
Function Evolution and Landscape Planning Strategy of Inland Rivers in Beilun Port City of Ningbo
6
作者 ZHONG Guoqing 《Journal of Landscape Research》 2024年第1期12-16,21,共6页
In the history, the main roles of inland rivers in Beilun Port City of Ningbo were desalination,blocking tides, shipping, and flood control. Nowadays, with the continuous spread and deepening ofurbanization, the ecolo... In the history, the main roles of inland rivers in Beilun Port City of Ningbo were desalination,blocking tides, shipping, and flood control. Nowadays, with the continuous spread and deepening ofurbanization, the ecological environment of river courses has been destroyed. In the past, remediationmeasures based on engineering and technology played a certain role, but can not “cure the root cause”. Itshould respect the historical evolution process of river courses, and highlight the ecological service functionand leisure tourism value of river courses from the coordination perspective of urban and rural ecologicalenvironment, economic industries, society and culture in the planning ideas of ecology, production, andlife integration. Four aspects of the measures are as below: protecting and repairing the ecological matrixof river courses;building green space system and maintaining flood control functions through the waternetwork;protecting cultural heritage along the rivers;developing waterfront leisure tourism scenic area. 展开更多
关键词 Beilun Port City inland river Function evolution Landscape planning
在线阅读 下载PDF
SUSTAINABLE EXPLOITATION AND UTILIZATION OF WATER RESOURCES IN THE INLAND RIVERBASIN OF ARID NORTHWEST CHINA 被引量:12
7
作者 马金珠 《Chinese Geographical Science》 SCIE CSCD 1997年第4期347-351,共5页
Calculated in terms of surface runoff plus irrepeated groundwater, there is about 8. 67 ×1010m3 of total available water resources in the inland river basins of arid Northwest China. Water resources is the decisi... Calculated in terms of surface runoff plus irrepeated groundwater, there is about 8. 67 ×1010m3 of total available water resources in the inland river basins of arid Northwest China. Water resources is the decisive factor for survival of oases and human being. But there have arisen several aspects of Serious eco-environment problems resulted from irrational exploitation and utilization. From now on, the development and utilization of water not only requires to promote regional economy, but also needs to protect and improve the environment based on their potential. Sustainable utilization needs to broaden new sources and saving water at first. Then three measures are recommended. 展开更多
关键词 water RESOURCES sustainable EXPLOITATION and utilization inland river BASIN
在线阅读 下载PDF
Hydrological and water cycle processes of inland river basins in the arid region of Northwest China 被引量:16
8
作者 CHEN Yaning LI Baofu +2 位作者 FAN Yuting SUN Congjian FANG Gonghuan 《Journal of Arid Land》 SCIE CSCD 2019年第2期161-179,共19页
The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oa... The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region. 展开更多
关键词 water resources climate change RIVER runoff BASEFLOW streamflow composition inland RIVER basin ARID region of NORTHWEST China
在线阅读 下载PDF
Mutual optimization of water utilization structure and industrial structure in arid inland river basins of Northwest China 被引量:14
9
作者 BAO Chao FANG Chuanglin CHEN Fan 《Journal of Geographical Sciences》 SCIE CSCD 2006年第1期87-98,共12页
Water is a key restricting factor of the economic development and eco-environmental protection in arid inland river basins of Northwest China. Although water supplies are short, the water utilization structure and the... Water is a key restricting factor of the economic development and eco-environmental protection in arid inland river basins of Northwest China. Although water supplies are short, the water utilization structure and the corresponding industrial structure are unbalanced. We constructed a System Dynamic Model for mutual optimization based on the mechanism of their interaction. This model is applied to the Heihe River Basin where the share of limited water resources among ecosystem, production and human living is optimized. Results show that, by mutual optimization, the water utilization structure and the industrial structures fit in with each other. And the relationships between the upper, middle and lower reaches of the Heihe River Basin can be harmonized. Mutual benefits of ecology, society and economy can be reached, and a sustainable ecology-production-living system can be obtained. This study gives a new insight and method for the sustainable utilization of water resources in arid inland river basins. 展开更多
关键词 water utilization structure industrial structure mutual optimization System Dynamic Model arid inland river basins Northwest China
在线阅读 下载PDF
Environmental suitability evaluation for human settlements in an arid inland river basin: A case study of the Shiyang River Basin 被引量:12
10
作者 WEi Wei SHI Peiji +3 位作者 ZHOU Junju FENG Haichun WANG Xufeng WANG Xueping 《Journal of Geographical Sciences》 SCIE CSCD 2013年第2期331-343,共13页
The study employs slope, aspect, relief degree of land surface, land use, vegetation index, hydrology and climate, as evaluation indexes to set up the Human Settlements Environmental Index (HEI) model to evaluate th... The study employs slope, aspect, relief degree of land surface, land use, vegetation index, hydrology and climate, as evaluation indexes to set up the Human Settlements Environmental Index (HEI) model to evaluate the environmental suitability for human settlements in the Shiyang River Basin. By using GIS spatial analysis technology, such as spatial overlay analysis, buffer analysis and density analysis, the environmental suitability of the human set- tlement spatial situation and spatial pattern are established to analyze their spatial distribution The results show that the index of suitability for human settlements in the Shiyang River Basin is between 17.13 and 84.32. In general, suitability for human settlements decreases from the southwest to the northeast. Seen from an area pattern, the suitable region is mainly distributed in the Minqin oasis, Wuwei oasis and Changning basin, which are about 1080.01 km2 and account for 2.59% of the total area. Rather and comparatively suitable region is mainly distributed around the counties of Gulang, Yongchang and north of Tianzhu, which is about 1100.30 km2. The common suitable region is mainly distributed outside the counties of Yongchang, Jinchuan and most parts of Minqin County, which are about 23328.04 km2, accounting for 56.08% of the total area. The unsuitable region is mainly distributed upstream and to the north of the river, which is about 9937.60 km2, accounting for 23.89% of the total area. Meanwhile, the least suitable region is distributed around the Qilian Mountains, which are covered by snow and cold desert and lie in the intersecting area between the Tengger Desert and Badain Jaran Desert. The total area is about 6154.05 km2, accounting for 14.79% of the total area. Suitable regions for human habitation are mainly distributed around rivers in the form of ribbons and batches, while others are scattered. The distribution pattern is iden- tical to the residential spatial pattern. In addition, the relationships between HEI and other factors have been analyzed. There is a clear logarithmic correlation between the residential environment and population, that is, the correlation coefficient between the evaluation valueand population density reaches 0.851. There is also a positive correlation between the residential environment and economy, which reaches an evaluation value of 0.845 between the residential environment and GDP. Results also show that the environment is out of bearing with the existing population in Shiyang River Basin. Spatial distribution of population is pro- foundly affected by severe environmental problems, such as the expanded deserts, the hilly terrain and the changing climate. Surface water shortage and slow economic growth are bot- tlenecks for suitable human settlement in the Shiyang River Basin. Combining these prob- lems with planning for construction of new country and the exploitation of local land, some residential areas should be relocated to improve the residential environment. 展开更多
关键词 geographic information systems suitability for human settlement arid inland area Shiyang RiverBasin
原文传递
Sensitivity analyses of different vegetations responding to climate change in inland river basin of China 被引量:8
11
作者 Hou Peng Wang Qiao +3 位作者 Cao Guangzhen Wang Changzuo Zhan Zhiming Yang Bingfeng 《Journal of Geographical Sciences》 SCIE CSCD 2012年第3期387-406,共20页
Terrestrial ecosystem and climate system are closely related to each other. Faced with the unavoidable global climate change, it is important to investigate terrestrial ecosystem responding to climate change. In inlan... Terrestrial ecosystem and climate system are closely related to each other. Faced with the unavoidable global climate change, it is important to investigate terrestrial ecosystem responding to climate change. In inland river basin of arid and semi-arid regions in China, sensitivity difference of vegetation responding to climate change from 1998 to 2007 was analyzed in this paper. (1) Differences in the global spatio-temporal distribution of vegetation and climate are obvious. The vegetation change shows a slight degradation in this whole region. Degradation is more obvious in densely vegetated areas. Temperature shows a general downward trend with a linear trend coefficient of -1.1467. Conversely, precipitation shows an increasing trend with a linear trend coefficient of 0.3896. (2) About the central tendency response, there are similar features in spatial distribution of both NDVI responding to precipitation (NDVI-P) and NDVI responding to AI (NDVI-AI), which are contrary to that of NDVI responding to air temperature (NDVI-T). Typical sensitivity region of NDVI-P and NDVI-AI mainly covers the northern temperate arid steppe and the northern temperate desert steppe. NDVI-T typical sensitivity region mainly covers the northern temperate desert steppe. (3) Regarding the fluctuation amplitude response, NDVI-T is dominated by the lower sensitivity, typical regions of the warm temperate shrubby, selui-shrubby, bare extreme dry desert, and northern temperate meadow steppe in the east and temperate semi-shrubby, dwarf arboreous desert in the north are high response. (4) Fluctuation amplitude responses between NDVI-P and NDVI-AI present a similar spatial distribution. The typical sensitivity region mainly covers the northern temperate desert steppe. There are various linear change trend responses of NDVI-T, NDVI-P and NDVI-AI. As to the NDVI-T and NDVI-AI, which are influenced by the boundary effect of semi-arid and semi-humid climate zones, there is less correlation of their linear change tendency along the border. There is stronger correlation in other regions, especially in the NDVI-T in the northern temperate desert steppe and NDVI-AI in the warm temperate shrubby, selui-shrubby, bare, extreme and dry desert. 展开更多
关键词 VEGETATION CLIMATE satellite images sensitivity analyses inland river basin China
原文传递
CONCEPT, DISTRIBUTION LAW AND FORMATION MACHANISM OF INLAND SALINE ALKALINE WETLAND─ ─ Taking Songliao Plain for Example 被引量:5
12
作者 SUN Guang you1, LUO Xin zheng2 , YI Fu ke1 , ZHANG Xiao ping1 (1.Changchun Institute of Geography, the Chinese Academy of Sciences,Changchun 130021,P.R.China 2.Institute of Geography, Academy of Henan Province, Zhengzhou 450052,P.R.China) 《Chinese Geographical Science》 SCIE CSCD 2000年第3期63-69,共2页
The paper, taking Songliao Plain for example, studied the concept, distribution law and formation mechanism of inland saline alkaline wetland. The inland saline alkaline wetland is distributed over the inland region o... The paper, taking Songliao Plain for example, studied the concept, distribution law and formation mechanism of inland saline alkaline wetland. The inland saline alkaline wetland is distributed over the inland region of arid or semi arid climate; it is the wet or slightly stagnant environment, forming saline alkaline soil and salt vegetation and making the geogra phical environment fonming complex with an ecosystem of saline alkaline wetland. The laws of zone nature and non zone nature control the distribution of the inland saline alkaline wetland that extensively spreads in north part of China and other countries. The inland saline alkaline wetland is formed jointly by atmosphere, hydrosphere, lithosphere and biosphere including intellectual sphere. Under the special condition, the artificial activity is possibly the key function. In order to improve the human environment, it is a great duty confronting the whole world to rationally transform the inland saline alkaline wetland. Therefore, we presented an anti inland theory to promote the environment transformation. 展开更多
关键词 Songliao Plain inland SALINE ALKALINE WETLAND WETLAND distribution law WETLAND CONCEPT WETLAND FORMATION mechanism
在线阅读 下载PDF
A distributed runoff model for inland mountainous river basin of Northwest China 被引量:6
13
作者 CHENRensheng KANGErsi +1 位作者 YANGJianping ZHANGJishi 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期363-372,共10页
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort... In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content. 展开更多
关键词 inland river mountainous basin distributed runoff model VEGETATION Heihe River
在线阅读 下载PDF
Climate effects on an inland alpine lake in Xinjiang, China over the past 40 years 被引量:7
14
作者 HuiXia CHAI WeiMing CHENG +2 位作者 ChengHu ZHOU ShangMin ZHAO HaiJiang LIU 《Journal of Arid Land》 SCIE CSCD 2013年第2期188-198,共11页
Inland lakes are important water resources in arid and semiarid regions. Understanding climate effects on these lakes is critical to accurately evaluate the dynamic changes of water resources. This study focused on th... Inland lakes are important water resources in arid and semiarid regions. Understanding climate effects on these lakes is critical to accurately evaluate the dynamic changes of water resources. This study focused on the changes in Sayram Lake of Xinjiang, China, and addressed the effects of climate fluctuations on the inland lake based on long-term sequenced remote sensing images and meteorological data from the past 40 years. A geo- graphic information system (GIS) method was used to obtain the hypsometry of the basin area of Sayram Lake, and estimation methods for evaporation from rising temperature and water levels from increasing precipitation were proposed. Results showed that: (1)Areal values of Sayram Lake have increased over the past 40 years. (2) Both temperature and precipitation have increased with average increases of more than 1.8~C and 82 mm, respectively. Variation of the water levels in the lake was consistent with local climate changes, and the areal values show linear relationships with local temperature and precipitation data. (3) According to the hypsometry data of the basin area, the estimated lake water levels increased by 2.8 m, and the water volume increased by 12.9×108 m3 over the past 40 years. The increasing area of Sayram Lake correlated with local and regional climatic changes because it is hardly affected by human activities. 展开更多
关键词 Sayram Lake climate change water body extraction areal variation inland alpine lake
在线阅读 下载PDF
Sedimentary Facies, Sequence Stratigraphic Patterns in Pre-Cenozoic Inland Compressional Basin: Example from Early Yanshanian Succession of Eastern Yihezhuang Salient, Jiyang Depression, Bohai Bay Basin, China 被引量:4
15
作者 Guangzeng Song Hua Wang +2 位作者 Meng Xu Jinda Xu Guoqing Sang 《Journal of Earth Science》 SCIE CAS CSCD 2019年第1期194-205,共12页
To improve the success rate of locating hydrocarbon reservoirs in pre-Cenozoic inland compressional basins, taking the Early Yanshanian succession of eastern Yihezhuang salient as an example, this paper studied the se... To improve the success rate of locating hydrocarbon reservoirs in pre-Cenozoic inland compressional basins, taking the Early Yanshanian succession of eastern Yihezhuang salient as an example, this paper studied the sedimentary facies and sequence stratigraphic patterns. First, through seismic profiles, well logs, cores and outcrops, the sequence framework was established and internal sedimentary facies were identified. Further, according to analysis of single-wells and connecting-wells, the vertical evolution and horizontal distribution of sedimentation inside the sequence frameworks were discussed. The following results were acquired:(1) meandering river characterized by dual structures superposing each other was developed, and the dual structures can be further divided into three kinds;(2) the entire Early Yanshanian succession was interpreted as one first-order sequence, composed of three third-order sequences, including SQ-Fz1, SQ-Fz2 and SQ-St from bottom to top. Each third-order sequence can be further divided into three system tracts;(3) in different system tracts, different types of dual structures developed separately, and sedimentary bodies showed different horizontal distribution scales and vertical superposition patterns. Finally, the model of sequence stratigraphic patterns was established. This study enhanced the use of sequence stratigraphy to inland tectonically active basins, and would be helpful to predict reservoirs in pre-Cenozoic residual basins. 展开更多
关键词 Early YANSHANIAN SUCCESSION SEQUENCE STRATIGRAPHIC patterns inland compressional BASIN meandering river dual structure
原文传递
Simulation of hydrological processes of mountainous watersheds in inland river basins: taking the Heihe Mainstream River as an example 被引量:7
16
作者 ZhenLiang YIN HongLang XIAO +4 位作者 SongBing ZOU Rui ZHU ZhiXiang LU YongChao LAN YongPing SHEN 《Journal of Arid Land》 SCIE CSCD 2014年第1期16-26,共11页
The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the ... The hydrological processes of mountainous watersheds in inland river basins are complicated.It is absolutely significant to quantify mountainous runoff for social,economic and ecological purposes.This paper takes the mountainous watershed of the Heihe Mainstream River as a study area to simulate the hydrological processes of mountainous watersheds in inland river basins by using the soil and water assessment tool(SWAT)model.SWAT simulation results show that both the Nash–Sutcliffe efficiency and the determination coefficient values of the calibration period(January 1995 to December 2002)and validation period(January 2002 to December 2009)are higher than 0.90,and the percent bias is controlled within±5%,indicating that the simulation results are satisfactory.According to the SWAT performance,we discussed the yearly and monthly variation trends of the mountainous runoff and the runoff components.The results show that from 1996 to 2009,an indistinctive rising trend was observed for the yearly mountainous runoff,which is mainly recharged by lateral flow,and followed by shallow groundwater runoff and surface runoff.The monthly variation demonstrates that the mountainous runoff decreases slightly from May to July,contrary to other months.The mountainous runoff is mainly recharged by shallow groundwater runoff in January,February,and from October to December,by surface runoff in March and April,and by lateral flow from May to September. 展开更多
关键词 hydrological process mountainous runoff inland river basin soil and water assessment tool the Heihe Mainstream River
在线阅读 下载PDF
Air–water CO2 flux in an algae bloom year for Lake Hongfeng,Southwest China:implications for the carbon cycle of global inland waters 被引量:8
17
作者 Faxiang Tao 《Acta Geochimica》 EI CAS CSCD 2017年第4期658-666,共9页
The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Manmade lakes ... The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Manmade lakes are undergoing a rapid increase in number and size. Human impacts and frequent algae blooms lead to it necessary to make a better constraint on their carbon cycles. Here, we make a primary estimation on the air–water CO_2 transfer flux through an algae bloom year for a subtropical man-made lake—Hongfeng Lake, Southwest China. To do this a new type of glass bottles was designed for content and isotopic analysis of DIC and other environmental parameters. At the early stage of algae bloom,CO_2 was transferred from the atmosphere to the lake with a net flux of 1.770 g·C·m^(-2). Later, the partial pressure(pCO_2) of the aqueous CO_2 increased rapidly and the lake outgassed to the atmosphere with a net flux of 95.727 g·C·m^(-2). In the remaining days, the lake again took up CO_2 from the atmosphere with a net flux of 14.804 g·C·m^(-2). As a whole, Lake Hongfeng released 4527 t C to the atmosphere, accounting for one-third of the atmosphere/soil CO_2 sequestered by chemical weathering in the whole drainage. With an empirical mode decomposition method, we found air temperature plays a major role in controlling water temperature, aqueous pCO_2 and hence CO_2 flux. This work indicates a necessity to make detailed and comprehensive carbon budgets in man-made lakes. 展开更多
关键词 CO2 flux Algae bloom Carbon cycle inland waters Lake Hongfeng
在线阅读 下载PDF
Performances of conventional fusion methods evaluated for inland water body observation using GF-1 image 被引量:3
18
作者 Yong Du Xiaoyu Zhang +1 位作者 Zhihua Mao Jianyu Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第1期172-179,共8页
Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ... Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation. 展开更多
关键词 GF-1 satellite IMAGE FUSION methods FUSION evaluation inland water body
在线阅读 下载PDF
Heavy Metal Pollution and Ecological Risk Assessment in Sediments of Xiling Channel Inland Waterway of Guangdong Province 被引量:7
19
作者 Jianqiao QIN Xiaoping HUANG 《Asian Agricultural Research》 2019年第6期40-46,49,共8页
Using the sediment monitoring data of five sections of the Xiling Channel inland waterway of the Pearl River Delta,and using Nemerow composite index,the coefficient of variation,and the index of geoaccumulation( Igeo)... Using the sediment monitoring data of five sections of the Xiling Channel inland waterway of the Pearl River Delta,and using Nemerow composite index,the coefficient of variation,and the index of geoaccumulation( Igeo) and the potential ecological risk index,this paper analyzed and assessed the heavy metal pollution of sediments. The results indicate that Cr reached mild pollution;Cu had a large degree of variation,and the changes of Cr and Zn were significant with fluctuation;the enrichment of heavy metals decreased as follows: Cd > Cu > Cr > Zn> Pb > Ni > Hg > As;Cd had the highest degree of enrichment and belonged to moderate pollution;the ecological hazard of heavy metals was Cd > Hg > Cu > Pb > As > Cr > Ni > Zn,and Cd had the highest ecological hazard and was the main controlling factor of potential ecological risk. In conclusion,the sediments in Xiling Channel inland waterway were polluted by heavy metals to some extent,and cadmium was the main pollutant and had the largest potential ecological risk. 展开更多
关键词 Xiling CHANNEL inland WATERWAY Sediment HEAVY metal pollution
在线阅读 下载PDF
Surface latent heat flux anomalies preceding inland earthquakes in China 被引量:4
20
作者 Kai Qin Guangmeng Guo Lixin Wu 《Earthquake Science》 CSCD 2009年第5期555-562,共8页
Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and ari... Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (〉μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m^2, Pu'er earthquake) and minimal (25 W/m^2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases. 展开更多
关键词 inland earthquake surface latent heat flux thermal anomaly satellite data
在线阅读 下载PDF
上一页 1 2 170 下一页 到第
使用帮助 返回顶部