This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes...This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.展开更多
Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct in...Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.展开更多
Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an ...Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an extensive attention due to its excellent electrical conductivity;however,how to use it to fabricate wearable flexible sensors with complex structures remains challenging.In this study,we studied the rheological behavior of graphene/polydimethylsiloxane ink and proposed an optimal graphene ratio,which makes the ink have an good printability and conductivity at the same time.Then,based on the theory of Peano fractal layout,we proposed a two-dimensional structure that can withstand multi-directional tension by replacing the traditional arris structure with the arc structure.After that,we manufactured circular arc fractal structure sensor by adjusting ink composition and printing structure through direct ink writing method.Finally,we evaluated the detection performance and repeatability of the sensor.This method provides a simple and effective solution for fabricating wearable flexible sensors and exhibits the potential to fabricate 3D complex flexible electronic devices.展开更多
Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displ...Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displays.Their wide applicability is due to a unique quantum confinement effect that enables precise spectral tunability and solution-processable properties.However,the complex fluid dynamics associated with QDIs at micro-/nano-scales severely limit the accuracy of inkjet printing and pattern deposition.This review systematically addresses recent advances in the hydrodynamics of QDIs,establishing scientific mechanisms and key technical breakthroughs from an interdisciplinary perspective.Current research has focused on three optimization directions:(1)regulating ligand structures to enhance colloidal stability,flow consistency,and anti-shear performance while mitigating nanoparticle aggregation;(2)incorporating low-viscosity or high-volatility solvents and surface tension modifiers to modify droplet dynamic characteristics and suppress the“coffee-ring”effect;(3)integrating advanced technologies such as electrohydrodynamic jetting and microfluidic targeted deposition to achieve submicron pattern resolution and high film uniformity,expanding adaptability in flexible electronics,biosensing,and anti-counterfeiting printing.A comparison of current technical routes and critical performance indicators has identified the dominant variables that influence QDI macroscopic/microscopic properties.A comprehensive analytical framework is presented which spans material structure,rheological behavior,manufacturing processes,and functional characteristics.Moreover,a proposed engineering‘structure–parameter–behavior–performance’serves to link core–shell structure,formulation parameters(e.g.,viscosity and surface tension),fluidic behavior(e.g.,shear thinning and Marangoni flow),and device performance(e.g.,resolution and photoluminescence efficiency).The findings provide theoretical support and decision-making guidance for the large-scale application and interdisciplinary expansion of QDIs.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
This study systemmatically investigated the effects of solid content and dispersant content on the physicochemical properties of ZnO-SnO_(2) composite ink.The experimental results show that even with the use of low-mo...This study systemmatically investigated the effects of solid content and dispersant content on the physicochemical properties of ZnO-SnO_(2) composite ink.The experimental results show that even with the use of low-molecular-weight PEG400 dispersant,gas-sensitive ink with high solid content and good suspension stability can be obtained,which is advantageous for low-temperature film formation and can effectively prevent property changes and film crack of high-temperature-sintering-induced material.Under this condition,the ink at a 15wt%solid content and 2wt%-10wt%PEG400 has good film-forming ability and high adhesion strength on the micro-electromechanical system(MEMS)micro-hotplates.Especially,the MEMS sensor printed using the ink of 6wt%PEG400 shows highest sensitivity,favorable impact resistance,thermal shock resistance,and up to 8 years of service life.展开更多
The polysaccharides from Sepia esculenta ink are potential candidates for biomedical applications due to their functional properties.In our study,a heteropolysaccharide,SE-1,isolated from Sepia esculenta ink,had a mol...The polysaccharides from Sepia esculenta ink are potential candidates for biomedical applications due to their functional properties.In our study,a heteropolysaccharide,SE-1,isolated from Sepia esculenta ink,had a molecular weight of 13.1 kDa and a monosaccharide composition of Man:GlcN:GlcUA:GalN:Xyl:Fuc=1.00:1.38:0.65:2.89:0.76:1.99.Through partial acid hydrolysis,me-thylation and one-and two-dimensional nuclear magnetic resonance(1D and 2D NMR)spectroscopic analyses,it is indicated that the structure of SE-1 consists of→4)-α-D-GlcpNAc-(1→,→4)-α-L-Fucp-(1→,→3)-α-D-GalpNAc-(1→,→2,6)-α-D-Manp-(1→and→3)-β-D-GlcpUA-(1→as the main chain and single terminalβ-D-Xylp-(1→,which links to O-2 of(1→2,6)-α-Manp,as the side chain.A new aminosugar-abundant heteropolysaccharide was isolated from S.esculenta ink for the first time.展开更多
To overcome reliance on molds and the difficulty of fabricating complex geometries with traditional C/C composites,direct ink writing(DIW)with UV/heat dual curing was employed to produce high-performance C/C composite...To overcome reliance on molds and the difficulty of fabricating complex geometries with traditional C/C composites,direct ink writing(DIW)with UV/heat dual curing was employed to produce high-performance C/C composites.The rheological properties of the composite inks were systematically analyzed to assess the effects of phenolic resin(PR)and carbon fiber(CF)content.Results show pronounced shear-thinning behavior and strong thixotropy-both essential for stable DIW.Additionally,UV/heat curing behavior was characterized to provide theoretical insights for optimizing curing parameters.Notably,CF addition is found to significantly attenuate UV light penetration compared to pure PR.As CF content increases,the critical UV irradiation energy rises sharply from 68.47 to 911.19 mJ/cm^(2),necessitating precise adjustments to curing parameters.Preforms were pyrolyzed in a carbon tube furnace to examine pore-formation characteristics,and chemical vapor infiltration(CVI)was applied to filling the resulting pores,yielding C/C composites with a flexural strength of 115.19 MPa.展开更多
Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were system...Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)).展开更多
High-temperature thin-film strain sensors are advanced technological devices for monitoring stress and strain in extreme environments,but the coupling of temperature and strain at high temperature is a challenge for t...High-temperature thin-film strain sensors are advanced technological devices for monitoring stress and strain in extreme environments,but the coupling of temperature and strain at high temperature is a challenge for their use.Here,this issue is addressed by creating a composite ink that combines Pb_(2)Ru_(2)O_(6) and TiB_(2) using polysilazane(PSZ)as a binder.After direct writing and annealing the PSZ/Pb_(2)Ru_(2)O_(6)/TiB_(2) film at 800℃ in air,the resulting thin film exhibits a low temperature coefficient of resistance(TCR)of only 281 ppm/℃ over a wide temperature range from 100℃ to 700℃,while also demonstrating high sensitivity with a gauge factor approaching 19.8.This exceptional performance is attributed to the intrinsic properties of Pb_(2)Ru_(2)O_(6),which has positive TCR at high temperature,and TiB2,which has negative TCR at high temperature.Combining these materials reduces the overall TCR of the film.Tests showed that the PSZ/Pb_(2)Ru_(2)O_(6)/TiB_(2) film maintains stable strain responses and significant signal output even under varying temperature.These findings provide valuable insights for developing high-temperature strain sensors with low TCR and high sensitivity,highlighting their potential for applications in high-temperature strain measurements.展开更多
In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(...In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.展开更多
As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-hel...As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.展开更多
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and i...Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.展开更多
基金Research results of the General Scientific Research Project of Zhejiang Education Department in 2024,“Research on the Digitalization of Song Yun Ink Painting-Taking the Ten Scenes of West Lake as an Example”(Project No.:Y202455200).
文摘This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.
基金supported by National Key Research and Development Program of China(Grant No.2022YFB3809000)Major Science and Technology Project of Gansu Province(Grant No.23ZDGA011)+1 种基金National Natural Science Foundation of China(Grant No.22275199,52105224)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB04701022021).
文摘Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.
基金the National Key Research and Development Program of China(No.2020YFB1313100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA16020803)+2 种基金the National Natural Science Foundation of China(Nos.51875557 and 52205319)the Research Equipment Development Program of the Chinese Academy of Sciences(No.YJKYYQ20190045)the Foundation of State Key Laboratory of Robotics(Nos.2021-Z01,2022-Z04 and 2023-Z01)。
文摘Flexible electronic technology has laid the foundation for complex human-computer interaction system,and has attracted great attention in the field of human motion detection and soft robotics.Graphene has received an extensive attention due to its excellent electrical conductivity;however,how to use it to fabricate wearable flexible sensors with complex structures remains challenging.In this study,we studied the rheological behavior of graphene/polydimethylsiloxane ink and proposed an optimal graphene ratio,which makes the ink have an good printability and conductivity at the same time.Then,based on the theory of Peano fractal layout,we proposed a two-dimensional structure that can withstand multi-directional tension by replacing the traditional arris structure with the arc structure.After that,we manufactured circular arc fractal structure sensor by adjusting ink composition and printing structure through direct ink writing method.Finally,we evaluated the detection performance and repeatability of the sensor.This method provides a simple and effective solution for fabricating wearable flexible sensors and exhibits the potential to fabricate 3D complex flexible electronic devices.
基金supported by the Shenzhen Polytechnic Research Fund(6023310025K)Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic(6023271017K)Horizontal Technology Development Project(6024260101K).
文摘Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displays.Their wide applicability is due to a unique quantum confinement effect that enables precise spectral tunability and solution-processable properties.However,the complex fluid dynamics associated with QDIs at micro-/nano-scales severely limit the accuracy of inkjet printing and pattern deposition.This review systematically addresses recent advances in the hydrodynamics of QDIs,establishing scientific mechanisms and key technical breakthroughs from an interdisciplinary perspective.Current research has focused on three optimization directions:(1)regulating ligand structures to enhance colloidal stability,flow consistency,and anti-shear performance while mitigating nanoparticle aggregation;(2)incorporating low-viscosity or high-volatility solvents and surface tension modifiers to modify droplet dynamic characteristics and suppress the“coffee-ring”effect;(3)integrating advanced technologies such as electrohydrodynamic jetting and microfluidic targeted deposition to achieve submicron pattern resolution and high film uniformity,expanding adaptability in flexible electronics,biosensing,and anti-counterfeiting printing.A comparison of current technical routes and critical performance indicators has identified the dominant variables that influence QDI macroscopic/microscopic properties.A comprehensive analytical framework is presented which spans material structure,rheological behavior,manufacturing processes,and functional characteristics.Moreover,a proposed engineering‘structure–parameter–behavior–performance’serves to link core–shell structure,formulation parameters(e.g.,viscosity and surface tension),fluidic behavior(e.g.,shear thinning and Marangoni flow),and device performance(e.g.,resolution and photoluminescence efficiency).The findings provide theoretical support and decision-making guidance for the large-scale application and interdisciplinary expansion of QDIs.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
基金Funded by the National Natural Science Foundation of China(No.62171331)the Hubei Provincial Natural Science Foundation of China(No.2020CFB188)the Sanya Science and Education Innovation Park of Wuhan University of Technology(No.2020KF0030)。
文摘This study systemmatically investigated the effects of solid content and dispersant content on the physicochemical properties of ZnO-SnO_(2) composite ink.The experimental results show that even with the use of low-molecular-weight PEG400 dispersant,gas-sensitive ink with high solid content and good suspension stability can be obtained,which is advantageous for low-temperature film formation and can effectively prevent property changes and film crack of high-temperature-sintering-induced material.Under this condition,the ink at a 15wt%solid content and 2wt%-10wt%PEG400 has good film-forming ability and high adhesion strength on the micro-electromechanical system(MEMS)micro-hotplates.Especially,the MEMS sensor printed using the ink of 6wt%PEG400 shows highest sensitivity,favorable impact resistance,thermal shock resistance,and up to 8 years of service life.
基金funded by the Natural Science Founda-tion of Zhejiang Province,China(No.LTGS23D060001)the Scientific Research Foundation for the Introduc-tion of Talent of Zhejiang Ocean University(No.JX6311130823).
文摘The polysaccharides from Sepia esculenta ink are potential candidates for biomedical applications due to their functional properties.In our study,a heteropolysaccharide,SE-1,isolated from Sepia esculenta ink,had a molecular weight of 13.1 kDa and a monosaccharide composition of Man:GlcN:GlcUA:GalN:Xyl:Fuc=1.00:1.38:0.65:2.89:0.76:1.99.Through partial acid hydrolysis,me-thylation and one-and two-dimensional nuclear magnetic resonance(1D and 2D NMR)spectroscopic analyses,it is indicated that the structure of SE-1 consists of→4)-α-D-GlcpNAc-(1→,→4)-α-L-Fucp-(1→,→3)-α-D-GalpNAc-(1→,→2,6)-α-D-Manp-(1→and→3)-β-D-GlcpUA-(1→as the main chain and single terminalβ-D-Xylp-(1→,which links to O-2 of(1→2,6)-α-Manp,as the side chain.A new aminosugar-abundant heteropolysaccharide was isolated from S.esculenta ink for the first time.
基金supported by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘To overcome reliance on molds and the difficulty of fabricating complex geometries with traditional C/C composites,direct ink writing(DIW)with UV/heat dual curing was employed to produce high-performance C/C composites.The rheological properties of the composite inks were systematically analyzed to assess the effects of phenolic resin(PR)and carbon fiber(CF)content.Results show pronounced shear-thinning behavior and strong thixotropy-both essential for stable DIW.Additionally,UV/heat curing behavior was characterized to provide theoretical insights for optimizing curing parameters.Notably,CF addition is found to significantly attenuate UV light penetration compared to pure PR.As CF content increases,the critical UV irradiation energy rises sharply from 68.47 to 911.19 mJ/cm^(2),necessitating precise adjustments to curing parameters.Preforms were pyrolyzed in a carbon tube furnace to examine pore-formation characteristics,and chemical vapor infiltration(CVI)was applied to filling the resulting pores,yielding C/C composites with a flexural strength of 115.19 MPa.
基金Project(22020JJ4729)supported by the Natural Science Foundation of Hunan Province,China。
文摘Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)).
基金the National Key Research and Development Program of China(Grant No.2021YFB2012100)the Major Science and Technology Projects in Fujian Province(Grant No.2023HZ021005)+1 种基金the Open Project Program of Fujian Key Laboratory of Special Intelligent Equipment Measurement and Control(Grant No.FJIES2023KF06)the Industry-University-Research Co-operation Fund of the Eighth Research Institute of China Aerospace Science and Technology Corporation(Grant No.SAST2023-061).
文摘High-temperature thin-film strain sensors are advanced technological devices for monitoring stress and strain in extreme environments,but the coupling of temperature and strain at high temperature is a challenge for their use.Here,this issue is addressed by creating a composite ink that combines Pb_(2)Ru_(2)O_(6) and TiB_(2) using polysilazane(PSZ)as a binder.After direct writing and annealing the PSZ/Pb_(2)Ru_(2)O_(6)/TiB_(2) film at 800℃ in air,the resulting thin film exhibits a low temperature coefficient of resistance(TCR)of only 281 ppm/℃ over a wide temperature range from 100℃ to 700℃,while also demonstrating high sensitivity with a gauge factor approaching 19.8.This exceptional performance is attributed to the intrinsic properties of Pb_(2)Ru_(2)O_(6),which has positive TCR at high temperature,and TiB2,which has negative TCR at high temperature.Combining these materials reduces the overall TCR of the film.Tests showed that the PSZ/Pb_(2)Ru_(2)O_(6)/TiB_(2) film maintains stable strain responses and significant signal output even under varying temperature.These findings provide valuable insights for developing high-temperature strain sensors with low TCR and high sensitivity,highlighting their potential for applications in high-temperature strain measurements.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.
基金supported by Shanxi Provincial Science and Technology Achievement Transformation Guidance Special Program of China(202104021301052)Shanxi Provincial Patent Transformation Special Plan Project(202202054,202306013).
文摘As a natural organic polymer,xanthan gum(XG)can alleviate the plastic deformation of gel ink under strong stress and realize the reasonable regulation of the rheological properties of gel ink.However,as the double-helix structure connected by hydrogen bonds cannot resist the mechanical environment of strong stress,XG shows poor shear resistance.In this study,a polymer gel with interpenetrating polymer network structure was prepared by esterifying XG,taking polystyrene maleic anhydride(SMA)as the modifier.In addition to retaining the excellent rheological properties of XG,the generated polymer gel also exhibited high shear resistance.The optimal addition amount of the esterification reaction modifier was determined as mXG:mSMA=5:3 according to the gel ink standard.With this amount,the viscosity of the modified xanthan gum(SXG)gel increased to 1578.8 mPa·s and 100.7 mPa·s at shear rates of 4 s1 and 383 s1,respectively,and the shear resistance increased more than 2 times compared to the unmodified one.It is because of the ester bond formed by esterification that the reaction strengthens the interaction between molecular segments,enabling the new gel to resist to strong mechanical stress.The new polymer gel studied in this paper and the proposed mechanism of action provide new insights for the development of high-end gel ink and also provide theoretical support for the study of rheological properties of non-Newtonian fluids.
基金funded by The Hong Kong Polytechnic University(Project No.1-WZ1Y,1-YXAK,1-W21C).
文摘Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables.Ink printing is desirable for e-textile development using a simple and inexpensive process.However,fabricating high-performance atop textiles with good dispersity,stability,biocompatibility,and wearability for high-resolution,large-scale manufacturing,and practical applications has remained challenging.Here,waterbased multi-walled carbon nanotubes(MWCNTs)-decorated liquid metal(LM)inks are proposed with carbonaceous gallium–indium micro-nanostructure.With the assistance of biopolymers,the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs.E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating,enabling good flexibility,hydrophilicity,breathability,wearability,biocompatibility,conductivity,stability,and excellent versatility,without any artificial chemicals.The obtained e-textile can be used in various applications with designable patterns and circuits.Multi-sensing applications of recognizing complex human motions,breathing,phonation,and pressure distribution are demonstrated with repeatable and reliable signals.Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs.As proof of concept,this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.