Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs,heat exchang...Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs,heat exchangers,marine propulsion,and aerodynamics.The current study investigates the characteristics of heat transport in a reactive third-grade fluid,moving through permeable parallel plates,with uniform suction/injection velocity.The two permeable,parallel plates are maintained at the same,constant temperature.After being transformed into its dimensionless equivalent,governing equations are solved by employing the Least Squares Method(LSM).The LSM results are further validated with numerical solutions for temperature and velocity.The impact of cross-flow Reynolds number,Peclet number,heat generation parameter,non-Newtonian parameter,and Brinkman number on entropy generation,velocity,temperature,and Bejan number are investigated.Theresults indicate that temperature distribution is significantly influenced by the third-grade fluid parameter.The maximum temperature drops from almost 0.12 to 0.10 as the third-grade fluid parameter increases from0.05 to 0.4.When the cross-flow Reynolds number is raised from 0.05 to 3,the maximum temperature drops from 0.12 to around 0.09.Temperature is strongly influenced by the heat generation parameter.A greater understanding of the thermal characteristics necessary for the design of a variety of systems,such as heat exchangers,marine propulsion,aerodynamic systems,etc.,may be gained from the findings of the current study.展开更多
The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject...The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.展开更多
Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carrie...Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.展开更多
The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections,including conce...The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections,including concentrate density,concentrate temperature,ethanol content,flow rate and stir rate in the addition of ethanol,precipitation time,and precipitation temperature.Under the experimental and simulated production conditions,a series of precipitated resultants were prepared by changing these variables one by one,and then examined by HPLC fingerprint analyses.Different from the traditional evaluation model based on single or a few constituents,the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis(PCA)to comprehensively assess the performance of ethanol precipitation.Our results showed that concentrate density,ethanol content,and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants.The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products.展开更多
To evaluate the effects of sperm with different parameters and sources on the outcomes of intracytoplasmic sperm injection (ICSI), 1972 ICSI cycles were analyzed retrospectively. Groups 1 to 5 were composed of cycles ...To evaluate the effects of sperm with different parameters and sources on the outcomes of intracytoplasmic sperm injection (ICSI), 1972 ICSI cycles were analyzed retrospectively. Groups 1 to 5 were composed of cycles using ejaculated sperm and were grouped according to sperm quantity, quality, and morphology into normal (288 cycles), or mild (329 cycles), moderate (522 cycles), severe (332 cycles), and extremely severe (171 cycles) oligozoospermia and/or asthenozoospermia and/or teratozoospermia (OAT) groups. Group 6 was composed of 250 cycles using testicular or epididymal sperm, and Group 7 consisted of 80 cycles using frozen-thawed sperm. We found that fertilization rates were gradually reduced from Groups 1 to 6, and reached statistical difference in Groups 5 and 6 (P<0.05). The high-quality embryo rate was higher in Group 1 than in Groups 2, 3, 5, 6, and 7 (P<0.05). No statistical differences were observed in the rates of embryo cleavage, clinical pregnancy, miscarriage, live-birth, premature birth, low birth weight, weeks of premature birth, average birth weight, or sex ratio for all seven groups (P>0.05). A total of nine cases of malformation were observed, with a malformation rate of 1.25% (9/719). In conclusion, different sperm sources and parameters can affect ICSI outcomes before embryo implantation. A full assessment of offspring mal-formation will require further study using a larger sample size.展开更多
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with e...A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3.展开更多
OBJECTIVE Danshen injection and Honghua injection,traditional Chinese medicine(TCM)injections,made from the extracts of Salvia miltiorrhiza Bge.and Carthamus tinctorius L.,have a potential to be developed into the use...OBJECTIVE Danshen injection and Honghua injection,traditional Chinese medicine(TCM)injections,made from the extracts of Salvia miltiorrhiza Bge.and Carthamus tinctorius L.,have a potential to be developed into the useful drugs for the.As the common TCM injections,Danshen injection is often combined with Honghua injection to treat cardiovascular disease.The purpose of this study was to investigate the pharmacokinetic parameters of Honghua injection combined with Danshen injection when they were coadministered intravenously in human and rats through the tail vein.METHODS Single and multiple doses of Danshen injection to study Danshen injection on Honghua injection pharmacokinetics parameters and single and multiple doses of Honghua injection to study Honghua injection on Danshen injection pharmacokinetics parameters.The plasma concentrations of hydroxysafflor A(HSYA)and tanshinol and salvianolic acid B were determined by the reliable high-performance liquid chromatography(HPLC)method.The concentrations of HSYA in urine of rats and human were also determined by HPLC method.DAS 2.1.1software was adopted for calculating the pharmacokinetic parameters.RESULTS The simultaneous intravenous Honghua injection and salvia miltiorrhiza injiection significantly altered the pharmacokinetic parameters of both injections when compared with the individual intravenous administration of each injection.The area under the concentration-timecurve(AUC)and maximum plasma concentration(Cmax)of HSYA and tanshinol and salvianolic acid B were significantly increased.The cumulative urine excretion of HSYA in human and rats during 24 h was decreased after two drugs were administered simultaneously by the intravenous.CONCLUSION Honghua injection and Danshen injection interact with each other following simultaneous intravenous and they have a synergistic action.This experiment has identified the pharmacokinetic parameters and provided a rationale for the clinical use of the drug combination.展开更多
In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed ...In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed as experimental method, and the Taguchi method is used to analyze significance of effect of process parameters on the cell size. At last the process parameters are focused on melt temperature, injection time, mold temperature and pretidied volume. The significance order from big to small of the effect of each process parameters on cell size is melt temperature, pre-filled volume, injection time, and mold temperature. On the basis of above research, the effect of each process parameter on cell size is further researched. Appropriate reduction of the melt temperature and increase of the pre-filled volume can optimize the cell size effectively, while the effects of injection time and mold temperature on cell size are less significant.展开更多
An intelligent model employing case-based reasoning(CBR) and fuzzy inference was constructed in terms to the system characteristics of plastic injection molding and considering the molding personnel's thought durin...An intelligent model employing case-based reasoning(CBR) and fuzzy inference was constructed in terms to the system characteristics of plastic injection molding and considering the molding personnel's thought during the molding trial-runs. The model describes the complex process of injection molding with a view to the characters and advantages of CBR and fuzzy theory. And it can be used to determine the initial process parameters and optimize the process parameters on-line. The key implementation technologies of the model are described in detail, including determining the initial process parameters based on CBR, correcting defects, optimizing process parameters based on fuzzy inference, etc. A corresponding intelligent system was developed which is integrated with injection machine by communicating with the controller.展开更多
Effect of two-stage sintering parameters such as heating rate, top sintering temperature and holding time, sintering temperature and holding time at the second stage on relative density, transverse rupture strength(TR...Effect of two-stage sintering parameters such as heating rate, top sintering temperature and holding time, sintering temperature and holding time at the second stage on relative density, transverse rupture strength(TRS) and microstructures of powder injection molded Ti(C, N)-based cermets were investigated, by means of Archimedes’s method, three-point bending test and micrographic analysis. The results show that the optimum sintering cycle for powder injection molded Ti(C, N)-based cermets comprises rapid heating (10℃/min) at low temperatures, slow heating (5℃/min) at intermediate temperatures, holding at the highest sintering temperature (1420℃) for a short time (10min), and holding at the second stage (1360℃) for a longer time (6h) to avoid grain coarsening, and that its TRS reaches 624MPa, and there are little pores in their microstructures.展开更多
In injection moulding production,the tuning of the process parameters is a challenging job,which relies heavily on the experience of skilled operators.In this paper,taking into consideration operator assessment during...In injection moulding production,the tuning of the process parameters is a challenging job,which relies heavily on the experience of skilled operators.In this paper,taking into consideration operator assessment during moulding trials,a novel intelligent model for automated tuning of process parameters is proposed.This consists of case based reasoning (CBR),empirical model (EM),and fuzzy logic (FL) methods.CBR and EM are used to imitate recall and intuitive thoughts of skilled operators,respectively,while FL is adopted to simulate the skilled operator optimization thoughts.First,CBR is used to set up the initial process parameters.If CBR fails,EM is employed to calculate the initial parameters.Next,a moulding trial is performed using the initial parameters.Then FL is adopted to optimize these parameters and correct defects repeatedly until the moulded part is found to be satisfactory.Based on the above methodologies,intelligent software was developed and embedded in the controller of an injection moulding machine.Experimental results show that the intelligent software can be effectively used in practical production,and it greatly reduces the dependence on the experience of the operators.展开更多
Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed,in this study the var-iation law of the rock electrical parameters has been determined through water displacement experiments w...Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed,in this study the var-iation law of the rock electrical parameters has been determined through water displacement experiments with different salinities.As made evident by the results,the saturation index increases with the degree of water injec-tion.When the salinity of the injected water is lower than 80000 ppm,the resistivity of the rock samplefirst decreases,then it remains almost constant in an intermediate stage,andfinally it grows,thereby giving rise to a‘U’profile behavior.As the salinity decreases,the water saturation corresponding to the inflection point of the resistivity becomes lower,thereby leading to a wider‘U’type range and a higher terminal resistivity.For dif-ferent samples,higher initial resistivity of the sample in the oil-bearing state,and higher resistivity after low-sali-nity water washing are obtained when a thicker lithology is considered.展开更多
Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in pro...Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in production are increasingly serious. However, there are many factors affecting the yield rate of injection products such as material characteristic, mold design, and manufacturing parameters etc. involved with injection machine and the whole manufacturing process. Traditionally, these factors can only be designed and adjusted by many times of trial-and-error tests. It is not only waste of time and resource, but also lack of methodology for referring. Although there are some methods as Taguchi method or neural network etc. proposed for serving and optimizing this problem, they are still insufficient for the needs. For the reasons, a method for determining the optimal parameters by the inverse model of manufacturing platform is proposed in this paper. Through the integration of inverse model basing on MANFIS and Taguchi method, inversely, the optimal manufacturing parameters can be found by using the product requirements. The effectiveness and feasibility of this proposal is confirmed through numerical studies on a real case example.展开更多
Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SA...Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SAGD production stage injection-production parameters such as the operating pressure, Sub - Cool control, steam injection rate, steam dryness, production factor are studied and selected.展开更多
UWS (optimized Urea-Water Solution) injection system is required to increase the NH3 conversion efficiency of urea-based SCR (Selective Catalytic Reduction) system of modem automobiles. The focus of the current st...UWS (optimized Urea-Water Solution) injection system is required to increase the NH3 conversion efficiency of urea-based SCR (Selective Catalytic Reduction) system of modem automobiles. The focus of the current study is to do parametric studies by simulation in a three-dimensional model using CFD (Computational Fluid Dynamics) code AVL FIRE. Simulations were carried out to study the characteristics of evaporation and thermolysis UWS considering the effect of injection velocity, duration of injection, injection angle and for different types of injection. In the case of the injection velocities up to 20-50 m/sec, the ammonia concentration continues to increase. It is found that as the duration injection decreases, the concentration of ammonia increases. In case of continuous injection, the flow rate is less which results in lower velocity of injection, lesser atomization and slower evaporation resulting lesser conversion of UWS into NH3. Shorter duration of injection leads better atomization with increased velocity of injection which results in faster evaporation and thermolysis.展开更多
Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make...Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform.展开更多
This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipat...This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipation in two dimensions.By utilizing the similarity transformations,the leading PDEs are transformed into a set of ODEs with adequate boundary conditions and then resolved numerically by(4–5)^(th)-order Runge-Kutta Fehlberg procedure based on the shooting technique.Numerical computations are carried out by Maple 15 software.With the support of graphs,the impact of dimensionless control parameters on the nanoparticle concentration profiles,the temperature,and the flow velocity are studied.Other parameters of interest,such as the skin friction coefficient,heat,and mass transport at the diverse situation and dependency of various parameters are inspected through tables and graphs.Additionally,it is verified that the numerical computations with the reported earlier studies are in an excellent approval.It is found that the heat and mass transmit rates are enhanced with the increasing values of the power-index and the suction(blowing)parameter,whilst are reduced with the boosting Casson and the heat absorption(generation)parameters.Also,the drag force coefficient is an increasing function of the powerindex and a reduction function of Casson parameter.展开更多
The present study reveals the effect of nonlinear thermal radiation and magnetic field on a boundary layer flow of a viscous fluid over a nonlinear stretching sheet with suction or an injection. Using suitable similar...The present study reveals the effect of nonlinear thermal radiation and magnetic field on a boundary layer flow of a viscous fluid over a nonlinear stretching sheet with suction or an injection. Using suitable similarity transformations, governing partial differential equations were reduced to higher order ordinary differential equations and further these are solved numerically using of Keller-Box method. Effect of flow controlling parameter on velocity, temperature and nanoparticle fluid concentration, local skin friction coefficient, local Nusselt number and local Sherwood numbers are discussed. It is found that the dimensionless velocity decreases and temperature, concentration are increased with the increasing of magnetic parameter. The temperature profile is an increasing function of thermal radiation when it is increasing.展开更多
Lead has been recognized as a high risk toxic for most organisms including human. The effects of Pb in non-mammalian vertebrates are oprly known, particularly in anuran amphibians. The purpose of this study was to det...Lead has been recognized as a high risk toxic for most organisms including human. The effects of Pb in non-mammalian vertebrates are oprly known, particularly in anuran amphibians. The purpose of this study was to determine the effect of this metal on some hematological parameters of adult Bufo arenarum. It was found that all parameters remained unaltered within normal ranges, with the exception of reticulocyte counts which was significantly increased compared to the in controls (3. 7% vs. 0. 2 % ). It is suggested that the selective change found in reticulocyte count might be considered as an early response of a biomarker to sublethal exposition of Bufo arenarum to lead.展开更多
文摘Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs,heat exchangers,marine propulsion,and aerodynamics.The current study investigates the characteristics of heat transport in a reactive third-grade fluid,moving through permeable parallel plates,with uniform suction/injection velocity.The two permeable,parallel plates are maintained at the same,constant temperature.After being transformed into its dimensionless equivalent,governing equations are solved by employing the Least Squares Method(LSM).The LSM results are further validated with numerical solutions for temperature and velocity.The impact of cross-flow Reynolds number,Peclet number,heat generation parameter,non-Newtonian parameter,and Brinkman number on entropy generation,velocity,temperature,and Bejan number are investigated.Theresults indicate that temperature distribution is significantly influenced by the third-grade fluid parameter.The maximum temperature drops from almost 0.12 to 0.10 as the third-grade fluid parameter increases from0.05 to 0.4.When the cross-flow Reynolds number is raised from 0.05 to 3,the maximum temperature drops from 0.12 to around 0.09.Temperature is strongly influenced by the heat generation parameter.A greater understanding of the thermal characteristics necessary for the design of a variety of systems,such as heat exchangers,marine propulsion,aerodynamic systems,etc.,may be gained from the findings of the current study.
基金the National Natural Science Foundation of China,grant numbers 51704253 and 52474084.
文摘The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.
基金Project(2011BAE22B05)supported by the National Science and Technology Pillar Program during the 12th Five-year Plan of China
文摘Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.
基金supported by 973 Project from the Ministry of Science and Technology of China(No.2010 CB735604)
文摘The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections,including concentrate density,concentrate temperature,ethanol content,flow rate and stir rate in the addition of ethanol,precipitation time,and precipitation temperature.Under the experimental and simulated production conditions,a series of precipitated resultants were prepared by changing these variables one by one,and then examined by HPLC fingerprint analyses.Different from the traditional evaluation model based on single or a few constituents,the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis(PCA)to comprehensively assess the performance of ethanol precipitation.Our results showed that concentrate density,ethanol content,and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants.The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products.
基金Project supported by the National Natural Science Foundation of China (No. 81070532)the National Basic Research Program (973) of China (Nos. 2012CB944901 and 2007CB948104)the Zhejiang Provincial Natural Science Foundation of China (No. Z207021)
文摘To evaluate the effects of sperm with different parameters and sources on the outcomes of intracytoplasmic sperm injection (ICSI), 1972 ICSI cycles were analyzed retrospectively. Groups 1 to 5 were composed of cycles using ejaculated sperm and were grouped according to sperm quantity, quality, and morphology into normal (288 cycles), or mild (329 cycles), moderate (522 cycles), severe (332 cycles), and extremely severe (171 cycles) oligozoospermia and/or asthenozoospermia and/or teratozoospermia (OAT) groups. Group 6 was composed of 250 cycles using testicular or epididymal sperm, and Group 7 consisted of 80 cycles using frozen-thawed sperm. We found that fertilization rates were gradually reduced from Groups 1 to 6, and reached statistical difference in Groups 5 and 6 (P<0.05). The high-quality embryo rate was higher in Group 1 than in Groups 2, 3, 5, 6, and 7 (P<0.05). No statistical differences were observed in the rates of embryo cleavage, clinical pregnancy, miscarriage, live-birth, premature birth, low birth weight, weeks of premature birth, average birth weight, or sex ratio for all seven groups (P>0.05). A total of nine cases of malformation were observed, with a malformation rate of 1.25% (9/719). In conclusion, different sperm sources and parameters can affect ICSI outcomes before embryo implantation. A full assessment of offspring mal-formation will require further study using a larger sample size.
基金Supported by the Program for New Century Excellent Talents in University(NECT-11-0826) the National Natural Science Foundation of China(NSFC 51279037)+1 种基金 the Fundamental Research Funds for the Central Universities(HEUCFZ13) the Postdoctoral Science-research Developmental Foundation of Heilongjiang Province(LBH-Q12126)Acknowledgement The authors gratefully acknowledge vice Professor Yong Shi and Jun Sun's help in fuel injection experiment.
文摘A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3.
基金The project supported by 2016-2018 Anhui University Research Platform Innovation Team
文摘OBJECTIVE Danshen injection and Honghua injection,traditional Chinese medicine(TCM)injections,made from the extracts of Salvia miltiorrhiza Bge.and Carthamus tinctorius L.,have a potential to be developed into the useful drugs for the.As the common TCM injections,Danshen injection is often combined with Honghua injection to treat cardiovascular disease.The purpose of this study was to investigate the pharmacokinetic parameters of Honghua injection combined with Danshen injection when they were coadministered intravenously in human and rats through the tail vein.METHODS Single and multiple doses of Danshen injection to study Danshen injection on Honghua injection pharmacokinetics parameters and single and multiple doses of Honghua injection to study Honghua injection on Danshen injection pharmacokinetics parameters.The plasma concentrations of hydroxysafflor A(HSYA)and tanshinol and salvianolic acid B were determined by the reliable high-performance liquid chromatography(HPLC)method.The concentrations of HSYA in urine of rats and human were also determined by HPLC method.DAS 2.1.1software was adopted for calculating the pharmacokinetic parameters.RESULTS The simultaneous intravenous Honghua injection and salvia miltiorrhiza injiection significantly altered the pharmacokinetic parameters of both injections when compared with the individual intravenous administration of each injection.The area under the concentration-timecurve(AUC)and maximum plasma concentration(Cmax)of HSYA and tanshinol and salvianolic acid B were significantly increased.The cumulative urine excretion of HSYA in human and rats during 24 h was decreased after two drugs were administered simultaneously by the intravenous.CONCLUSION Honghua injection and Danshen injection interact with each other following simultaneous intravenous and they have a synergistic action.This experiment has identified the pharmacokinetic parameters and provided a rationale for the clinical use of the drug combination.
文摘In order to study the relationship between the main process parameters and the cell size, the mathematical model of cell growth of microcellular foaming injection process is built. Then numeric simulation is employed as experimental method, and the Taguchi method is used to analyze significance of effect of process parameters on the cell size. At last the process parameters are focused on melt temperature, injection time, mold temperature and pretidied volume. The significance order from big to small of the effect of each process parameters on cell size is melt temperature, pre-filled volume, injection time, and mold temperature. On the basis of above research, the effect of each process parameter on cell size is further researched. Appropriate reduction of the melt temperature and increase of the pre-filled volume can optimize the cell size effectively, while the effects of injection time and mold temperature on cell size are less significant.
基金Supported by New Century Excellent Talents in University of China(NCET-040-0718) and Young Scholars of Hubei Province(2005ABB04)
文摘An intelligent model employing case-based reasoning(CBR) and fuzzy inference was constructed in terms to the system characteristics of plastic injection molding and considering the molding personnel's thought during the molding trial-runs. The model describes the complex process of injection molding with a view to the characters and advantages of CBR and fuzzy theory. And it can be used to determine the initial process parameters and optimize the process parameters on-line. The key implementation technologies of the model are described in detail, including determining the initial process parameters based on CBR, correcting defects, optimizing process parameters based on fuzzy inference, etc. A corresponding intelligent system was developed which is integrated with injection machine by communicating with the controller.
文摘Effect of two-stage sintering parameters such as heating rate, top sintering temperature and holding time, sintering temperature and holding time at the second stage on relative density, transverse rupture strength(TRS) and microstructures of powder injection molded Ti(C, N)-based cermets were investigated, by means of Archimedes’s method, three-point bending test and micrographic analysis. The results show that the optimum sintering cycle for powder injection molded Ti(C, N)-based cermets comprises rapid heating (10℃/min) at low temperatures, slow heating (5℃/min) at intermediate temperatures, holding at the highest sintering temperature (1420℃) for a short time (10min), and holding at the second stage (1360℃) for a longer time (6h) to avoid grain coarsening, and that its TRS reaches 624MPa, and there are little pores in their microstructures.
基金Project supported by the National Natural Science Foundation of China (Nos.50905162 and 51005151)the Open Foundation of State Key Laboratory of Material Processing and Die & Mould Technology (No. 2010-P01),China
文摘In injection moulding production,the tuning of the process parameters is a challenging job,which relies heavily on the experience of skilled operators.In this paper,taking into consideration operator assessment during moulding trials,a novel intelligent model for automated tuning of process parameters is proposed.This consists of case based reasoning (CBR),empirical model (EM),and fuzzy logic (FL) methods.CBR and EM are used to imitate recall and intuitive thoughts of skilled operators,respectively,while FL is adopted to simulate the skilled operator optimization thoughts.First,CBR is used to set up the initial process parameters.If CBR fails,EM is employed to calculate the initial parameters.Next,a moulding trial is performed using the initial parameters.Then FL is adopted to optimize these parameters and correct defects repeatedly until the moulded part is found to be satisfactory.Based on the above methodologies,intelligent software was developed and embedded in the controller of an injection moulding machine.Experimental results show that the intelligent software can be effectively used in practical production,and it greatly reduces the dependence on the experience of the operators.
基金The authors would like to acknowledge the financial support from the Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology(Grant No.CDYQCY202201)funded by the Key Laboratory of Shallow Geothermal Energy,Ministry of Natural Resources of the People’s Republic of China.The authors thank the anonymous reviewers for their constructive and valuable opinions gratefully.
文摘Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed,in this study the var-iation law of the rock electrical parameters has been determined through water displacement experiments with different salinities.As made evident by the results,the saturation index increases with the degree of water injec-tion.When the salinity of the injected water is lower than 80000 ppm,the resistivity of the rock samplefirst decreases,then it remains almost constant in an intermediate stage,andfinally it grows,thereby giving rise to a‘U’profile behavior.As the salinity decreases,the water saturation corresponding to the inflection point of the resistivity becomes lower,thereby leading to a wider‘U’type range and a higher terminal resistivity.For dif-ferent samples,higher initial resistivity of the sample in the oil-bearing state,and higher resistivity after low-sali-nity water washing are obtained when a thicker lithology is considered.
基金The authors would like to thank the research group that took part in the study for their generous cooperation. Project 50965003 supported by National Natural Science Foundation of China.
文摘Since plastic products are with the features as light, anticorrosive and low cost etc., that are generally used in several of tools or components. Consequently, the requirements on the quality and effectiveness in production are increasingly serious. However, there are many factors affecting the yield rate of injection products such as material characteristic, mold design, and manufacturing parameters etc. involved with injection machine and the whole manufacturing process. Traditionally, these factors can only be designed and adjusted by many times of trial-and-error tests. It is not only waste of time and resource, but also lack of methodology for referring. Although there are some methods as Taguchi method or neural network etc. proposed for serving and optimizing this problem, they are still insufficient for the needs. For the reasons, a method for determining the optimal parameters by the inverse model of manufacturing platform is proposed in this paper. Through the integration of inverse model basing on MANFIS and Taguchi method, inversely, the optimal manufacturing parameters can be found by using the product requirements. The effectiveness and feasibility of this proposal is confirmed through numerical studies on a real case example.
文摘Steam assisted gravity drainage (SAGD) technology has been industrialized popularization and application in our country, according to the characteristics of Xing group I SAGD experimental zone in liaohe oilfield, SAGD production stage injection-production parameters such as the operating pressure, Sub - Cool control, steam injection rate, steam dryness, production factor are studied and selected.
文摘UWS (optimized Urea-Water Solution) injection system is required to increase the NH3 conversion efficiency of urea-based SCR (Selective Catalytic Reduction) system of modem automobiles. The focus of the current study is to do parametric studies by simulation in a three-dimensional model using CFD (Computational Fluid Dynamics) code AVL FIRE. Simulations were carried out to study the characteristics of evaporation and thermolysis UWS considering the effect of injection velocity, duration of injection, injection angle and for different types of injection. In the case of the injection velocities up to 20-50 m/sec, the ammonia concentration continues to increase. It is found that as the duration injection decreases, the concentration of ammonia increases. In case of continuous injection, the flow rate is less which results in lower velocity of injection, lesser atomization and slower evaporation resulting lesser conversion of UWS into NH3. Shorter duration of injection leads better atomization with increased velocity of injection which results in faster evaporation and thermolysis.
文摘Affine projection algorithm(APA)has been used to estimate the parameters of interior permanent magnet synchronous motor(IPMSM).However,there is not a strict guideline of choosing the stepsize of this algorithm to make sure that the results of parameter estimation are convergent.In order to solve such problem,self-adaptive stepsize affine projection algorithm for parameter estimation of IPMSM is proposed in this paper.Compared with traditional affine projection algorithm,this method can obtain the stepsize automatically based on the operation condition,which can ensure the convergence and celerity of the process of parameter estimation.Then,on the basis of self-adaptive stepsize affine projection algorithm,a novel parameter estimation method based on square-wave current injection is proposed.By this method,the error of estimated parameter caused by stator resistance,linkage magnetic flux and dead-time voltage can be reduced effectively.Finally,the proposed parameter estimation method is verified by experiments on a 2.2-kW IPMSM drive platform.
基金the Deanship of Scientific Research,Taif University,KSA[Research Project Number 0-440-6166].
文摘This paper introduces the effect of heat absorption(generation)and suction(injection)on magnetohydrodynamic(MHD)boundary-layer flow of Casson nanofluid(CNF)via a non-linear stretching surface with the viscous dissipation in two dimensions.By utilizing the similarity transformations,the leading PDEs are transformed into a set of ODEs with adequate boundary conditions and then resolved numerically by(4–5)^(th)-order Runge-Kutta Fehlberg procedure based on the shooting technique.Numerical computations are carried out by Maple 15 software.With the support of graphs,the impact of dimensionless control parameters on the nanoparticle concentration profiles,the temperature,and the flow velocity are studied.Other parameters of interest,such as the skin friction coefficient,heat,and mass transport at the diverse situation and dependency of various parameters are inspected through tables and graphs.Additionally,it is verified that the numerical computations with the reported earlier studies are in an excellent approval.It is found that the heat and mass transmit rates are enhanced with the increasing values of the power-index and the suction(blowing)parameter,whilst are reduced with the boosting Casson and the heat absorption(generation)parameters.Also,the drag force coefficient is an increasing function of the powerindex and a reduction function of Casson parameter.
文摘The present study reveals the effect of nonlinear thermal radiation and magnetic field on a boundary layer flow of a viscous fluid over a nonlinear stretching sheet with suction or an injection. Using suitable similarity transformations, governing partial differential equations were reduced to higher order ordinary differential equations and further these are solved numerically using of Keller-Box method. Effect of flow controlling parameter on velocity, temperature and nanoparticle fluid concentration, local skin friction coefficient, local Nusselt number and local Sherwood numbers are discussed. It is found that the dimensionless velocity decreases and temperature, concentration are increased with the increasing of magnetic parameter. The temperature profile is an increasing function of thermal radiation when it is increasing.
文摘Lead has been recognized as a high risk toxic for most organisms including human. The effects of Pb in non-mammalian vertebrates are oprly known, particularly in anuran amphibians. The purpose of this study was to determine the effect of this metal on some hematological parameters of adult Bufo arenarum. It was found that all parameters remained unaltered within normal ranges, with the exception of reticulocyte counts which was significantly increased compared to the in controls (3. 7% vs. 0. 2 % ). It is suggested that the selective change found in reticulocyte count might be considered as an early response of a biomarker to sublethal exposition of Bufo arenarum to lead.