Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced inj...Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced injectivity, reservoir plugging, production downtime, and extensive repair costs. Monitoring of system microbiology is required in any mitigation strategy, enabling operators to apply and adjust countermeasures properly and in due time. In previous studies [1] [2], DNA staining technology with SYBR Green dye was evaluated to have a sufficient detection limit and automation potential for real-time detection of microbial activity in the Saudi Aramco injection seawater. In this study, technical requirements and design solutions were defined, and an autonomous microbe sensor (AMS) prototype was constructed, tested and optimized in the laboratory, and validated in the field for automated detection of microorganisms in the harsh Saudi Arabia desert environment and injection seawater. The AMS prototype was able to monitor and follow the general microbial status in the system, including detection of periods with increased microbial growth or decreased microbial numbers following biocide injection. The infield AMS detection limit was 10<sup>5</sup> cells/mL. The long-term field testing also identified the areas for technical improvement and optimization for further development of a more robust and better performing commercial microbial sensing device.展开更多
This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensi...This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensive multiphysics simulations guided by field data from hydrate production tests in the South China Sea,we pinpoint key operational parameters—such as injection rates,depths,and timings—that notably enhance production efficiency.The results indicate that a 3-phase hydrate reservoir transitions from a free-gas-dominated production stage to a hydrate-decomposition-dominated stage.Moderate warm seawater injection supplies additional heat during the hydrate decomposition phase,thereby enhancing stable production;however,excessively high injection rates can impede the depressurization process.Only injection at an appropriate depth simultaneously balances thermal supplementation and the pressure gradient,leading to higher overall productivity.A“depressurization-driven sensible-heat supply window”is introduced,highlighting that timely seawater injection following initial depressurization prolongs reservoir dissociation dynamics.In this study area,commencing seawater injection at 170 d of depressurization proved optimal.This optimized integration leverages clean and renewable thermal energy,providing essential insights into thermal supplementation strategies with significant implications for sustainable,economically feasible,and efficient commercial-scale hydrate production.展开更多
Water flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs.The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate rese...Water flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs.The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs.During seawater injection in carbonate formations,the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition.This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years.The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique.Further,the characterization of the rock surface is evaluated by molecular kinetic theory(MKT)modeling.The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process.While the wettability of low permeable samples changes to be slightly water-wet,the wettability of the samples with higher permeability remains unchanged after soaking in seawater.Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.展开更多
Biocides are oilfield chemicals that are widely used to control bacterial activity throughout the oil industry. A feasibility study has been explored to develop detection techniques for biocide batch treatments, prefe...Biocides are oilfield chemicals that are widely used to control bacterial activity throughout the oil industry. A feasibility study has been explored to develop detection techniques for biocide batch treatments, preferably on-line and in real-time, for their potential use in seawater flooding system. Several methods to measure key components of the biocide formulation were investigated and reported in previous study [1]. The enzymatic activity of an immobilized acetylcholine esterase (AChE) on the column material was successfully inhibited by some model compounds, but not by the actual biocides commonly used in Saudi Aramco seawater flooding system. In this paper, an alternative assay for biocide detection in the Saudi Aramco seawater flooding system was investigated for its applicability for the development of on-line biocide sensor. The assay was based on the detection of aldehyde functionality in the biocide mixture through measurement of a fluorescent derivative formed in the reaction of aldehyde groups and dimedone in the presence of ammonium acetate. The reaction of aldehyde groups with dimedone was demonstrated in seawater matrix, and the formed fluorescent product was successfully measured. The results showed that the dimedone-based assay was very sensitive, and relatively straightforward to perform. The ruggedness test also indicated that the assay is sensitive to minor changes of various specific conditions of the method. It is concluded that the dimedone assay is suitable for further development of a real-time biocide monitoring system to detect the presence of biocide slugs in seawater flooding system. The development of an automated on-line biocide sensor based on dimedone assay is underway.展开更多
文摘Microbial growth in the water injection system is a well-known problem with severe operational and financial consequences for the petroleum industry, including microbiologically influenced corrosion (MIC), reduced injectivity, reservoir plugging, production downtime, and extensive repair costs. Monitoring of system microbiology is required in any mitigation strategy, enabling operators to apply and adjust countermeasures properly and in due time. In previous studies [1] [2], DNA staining technology with SYBR Green dye was evaluated to have a sufficient detection limit and automation potential for real-time detection of microbial activity in the Saudi Aramco injection seawater. In this study, technical requirements and design solutions were defined, and an autonomous microbe sensor (AMS) prototype was constructed, tested and optimized in the laboratory, and validated in the field for automated detection of microorganisms in the harsh Saudi Arabia desert environment and injection seawater. The AMS prototype was able to monitor and follow the general microbial status in the system, including detection of periods with increased microbial growth or decreased microbial numbers following biocide injection. The infield AMS detection limit was 10<sup>5</sup> cells/mL. The long-term field testing also identified the areas for technical improvement and optimization for further development of a more robust and better performing commercial microbial sensing device.
基金supported by the National Key R&D Program of China(No.2024YFB4206700)the Joint Geological Funds of the National Natural Science Foundation of China(No.U2244223)+5 种基金the China Scholarship Council Program(No.202404910533)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030003)the China Geological Survey Project(No.DD20211350)the Key Deployment Program of Chinese Academy of Sciences(Nos.YJKYYQ20190043,ZDBS-LY-DQC003,KFZD-SW-422,and ZDRW-ZS-2021-3-1)the Scientific Research and Technology Development Project of China National Petroleum Corporation(No.2022DJ5503)the Supercomputing Laboratory,IGGCAS.
文摘This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensive multiphysics simulations guided by field data from hydrate production tests in the South China Sea,we pinpoint key operational parameters—such as injection rates,depths,and timings—that notably enhance production efficiency.The results indicate that a 3-phase hydrate reservoir transitions from a free-gas-dominated production stage to a hydrate-decomposition-dominated stage.Moderate warm seawater injection supplies additional heat during the hydrate decomposition phase,thereby enhancing stable production;however,excessively high injection rates can impede the depressurization process.Only injection at an appropriate depth simultaneously balances thermal supplementation and the pressure gradient,leading to higher overall productivity.A“depressurization-driven sensible-heat supply window”is introduced,highlighting that timely seawater injection following initial depressurization prolongs reservoir dissociation dynamics.In this study area,commencing seawater injection at 170 d of depressurization proved optimal.This optimized integration leverages clean and renewable thermal energy,providing essential insights into thermal supplementation strategies with significant implications for sustainable,economically feasible,and efficient commercial-scale hydrate production.
基金the financial support of Iranian Offshore Oil Company (IOOC)
文摘Water flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs.The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs.During seawater injection in carbonate formations,the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition.This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years.The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique.Further,the characterization of the rock surface is evaluated by molecular kinetic theory(MKT)modeling.The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process.While the wettability of low permeable samples changes to be slightly water-wet,the wettability of the samples with higher permeability remains unchanged after soaking in seawater.Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.
文摘Biocides are oilfield chemicals that are widely used to control bacterial activity throughout the oil industry. A feasibility study has been explored to develop detection techniques for biocide batch treatments, preferably on-line and in real-time, for their potential use in seawater flooding system. Several methods to measure key components of the biocide formulation were investigated and reported in previous study [1]. The enzymatic activity of an immobilized acetylcholine esterase (AChE) on the column material was successfully inhibited by some model compounds, but not by the actual biocides commonly used in Saudi Aramco seawater flooding system. In this paper, an alternative assay for biocide detection in the Saudi Aramco seawater flooding system was investigated for its applicability for the development of on-line biocide sensor. The assay was based on the detection of aldehyde functionality in the biocide mixture through measurement of a fluorescent derivative formed in the reaction of aldehyde groups and dimedone in the presence of ammonium acetate. The reaction of aldehyde groups with dimedone was demonstrated in seawater matrix, and the formed fluorescent product was successfully measured. The results showed that the dimedone-based assay was very sensitive, and relatively straightforward to perform. The ruggedness test also indicated that the assay is sensitive to minor changes of various specific conditions of the method. It is concluded that the dimedone assay is suitable for further development of a real-time biocide monitoring system to detect the presence of biocide slugs in seawater flooding system. The development of an automated on-line biocide sensor based on dimedone assay is underway.