The injection molding products with different volume ratios of ZrO2 ceramic powder to 316L stainless steel powder were prepared. Properties and structure of the products were characterized by X-ray diffraction(XRD),...The injection molding products with different volume ratios of ZrO2 ceramic powder to 316L stainless steel powder were prepared. Properties and structure of the products were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope (TEM). The results show that the compressive stress exists in the products and the bend strength reaches 300MPa. ZrO2 phase and stainless steel phase are uniform in samples. The toughness of ceramic increases with the increasing the content of stainless steel. Through TEM study of the interface, some crystalline orientation relationships are determined.展开更多
Interstitial oxygen(O)contamination remains a substantial challenge for metal injection molding(MIM)of titanium alloys.Herein,this critical problem is successfully addressed by regulating the thermal debinding tempera...Interstitial oxygen(O)contamination remains a substantial challenge for metal injection molding(MIM)of titanium alloys.Herein,this critical problem is successfully addressed by regulating the thermal debinding temperature and incorporating the oxygen scavenger LaB_(6).Results indicate that the surface oxide layer(with a thickness of(13.4±0.5)nm)of Ti_(6)Al4V powder begins to dissolve into the Ti matrix within the temperature range of 663–775℃.O contamination in MIM Ti alloys can be effectively mitigated by lowering the thermal debinding temperature and adding LaB6powder.As a result of reduced dissolved O content,the slips of mixedanddislocations are effectively accelerated,leading to improved ductility.Moreover,grain refinement,along with the in situ formation of Ti B whiskers and second-phase La_(2)O_(3)particles,enhances the strength of the material.The fabricated MIM Ti6Al4V sample exhibits excellent mechanical properties,achieving an ultimate tensile strength of(967±5)MPa,a yield strength of(866±8)MPa,and an elongation of 21.4%±0.7%.These tensile properties represent some of the best results reported in the literature for MIM Ti_(6)Al4V alloys.This study offers valuable insights into the development of high-performance MIM Ti alloys and other metal materials.展开更多
Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted...Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted to determine the rheological parameters and to analyze the rheological properties of the feedstocks at different milling time, powder loading and temperature. It is indicated through the results that the viscosity increases and the value of n decreases with the increase of milling time. The more the powder loading is, the higher the viscosity is. The empirical formula on the relationship between the viscosity and the powder loading is: ηr=η/ηb=A(1-Ф/Фmax)/^- m . The value m is calculated as 0.33. The flow activation energy Ea decreases with the increase of shear rate.展开更多
The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on th...The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage.展开更多
For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the war...For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.展开更多
An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. Th...An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. The injection molding, debinding, and sintering process were studied. An ideal control of carbon and oxygen contents was achieved by thermal debinding in vacuum atmosphere (10^-3 Pa). The mechanical properties of as-sintered specimens were less than those of titanium made by the conventional press-sintering process. Good shape retention and ±0.04 mm dimension deviation were achieved.展开更多
A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic s...A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.展开更多
This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a c...This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.展开更多
Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savin...Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology.展开更多
The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improv...The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improving depends on the design quality of the stationary platen. Compared with the parametric design of stationary platen, structural scheme design could obtain the optimization model with double objectives and multi-constraints. In this paper, a SE-160 precision plastic injection molding machine with 1600 kN clamping force is selected as the subject in the case study. During the motion of mold closing and opening, the stationary platen of SE-160 is subjected to a cyclic loading, which would cause the fatigue rupture of the tie bars in periodically long term operations. In order to reduce the deflection of the stationary platen, the FEA method is introduced to optimize the structure of the stationary platen. Firstly, an optimal topology model is established by variable density method. Then, structural topology optimizations of the stationary platen are done with the removable material from 50%, 60% to 70%. Secondly, the other two recommended optimization schemes are given and compared with the original structure. The result of performances comparison shows that the scheme II of the platen is the best one. By choosing the best alternative, the volume and the local maximal stress of the platen could be decreased, corresponding to cost-saving material and better mechanical properties. This paper proposes a structural optimization design scheme, which can save the material as well as improve the clamping precision of the precision plastic injection molding machine.展开更多
Polypropylene (PP)/titanium dioxide (TiO2) nano-composites were prepared by melt compounding with a twin screw extruder. Nanoparticles were modified prior to melt mixing with maleic anhydride grafted styreneethyle...Polypropylene (PP)/titanium dioxide (TiO2) nano-composites were prepared by melt compounding with a twin screw extruder. Nanoparticles were modified prior to melt mixing with maleic anhydride grafted styreneethylene-butylene-styrene (SEBS-g-MA) and silane. The composites were injection molded and mechanical tests were applied to obtain tensile strength, elastic modulus and impact strength. Antibacterial efficiency test was applied on the injection molded composite plaques by viable cell counting technique. The results showed that the composites including SEBS-g-MA and silane coated TiO2 gave better mechanical properties than the composites without SEBS-g-MA. Antibacterial efficiency of the composites varied according to the dispersion and the concentration of the particles and it was observed that composites at low content of TiO2 showed higher antibacterial property due to the better photocatalytic activity of the particles during UV exposure.展开更多
This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of vari...This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.展开更多
High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders...High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively.展开更多
Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistanc...Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites.展开更多
This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection m...This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection molding technology to considerably improve material utilization.The influence of MIM carbon impurity variation on the mechanical properties and corrosion resistance of 316L stainless steel was studied.In vitro cytotoxicity and animal transplantation tests were also carried out to evaluate the safety of MIM stents.The results showed that the performance of 316L stainless steel was very sensitive to the carbon content.Carbon fluctuations should be precisely controlled during MIM.All MIM stents were successfully implanted into the aortas of the dogs,and the MIM 316L stents had no significant cytotoxicity.The novel intravascular stent manufactured using MIM can maintain a stable form and structure with fast endothelialization of the luminal surface of the stent and ensure long-term patency in an animal model.The novel intravascular stent manufactured using MIM demonstrates favorable structural,physical,and chemical stability,as well as biocompatibility,offering promising application in clinical practice.展开更多
The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic const...The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.展开更多
Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with different injection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young...Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with different injection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young's modulus was observed with increasing injection speed. In order to investigate the mechanism behind this decrease, the orientation, molecular weight, molecular weight distribution, melt flow rate, crystallinity and crystal morphology of HDPE were characterized using two-dimensional wide-angle X-ray diffraction (2D-WAXD), gel permeation chromatography (GPC), capillary rheometry and differential scanning calorimetry (DSC), respectively. It is demonstrated that the orientation, molecular weight, molecular weight distribution, melt flow rate and crystallinity have no obvious change with increasing injection speed. Nevertheless, the content of extended chain crystals or large folded chain crystals was found to decrease with increasing injection speed. Therefore, it is concluded that the decrease in tensile properties is mainly contributed by the reduced content of extended chain crystals or large folded chain crystals. This study provides industry with valuable information for the application of high speed injection molding.展开更多
In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- perime...In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds.展开更多
An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision ...An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample.展开更多
The powder space holder (PSH) and powder injection molding (PIM) methods have an industrial competitive advantage because they are capable of the net-shape production of micro-sized porous parts. In this study, mi...The powder space holder (PSH) and powder injection molding (PIM) methods have an industrial competitive advantage because they are capable of the net-shape production of micro-sized porous parts. In this study, micro-porous Ti6Al4V alloy (Ti64) parts were produced by the PSH-PIM process. Ti64 alloy powder and spherical polymethylrnethacrylate (PMMA) particles were used as a space holder material. After molding, binder debinding was performed by thermal method under inert gas. Debinded samples were sintered at 1250℃ for 60min in a vacuum (10-4 Pa). Metallographic studies were conducted to determine densification and the corresponding microstructural changes. The surface of sintered samples was examined by SEM. The compressive stress and elastic modulus of the rificro-porous Ti64 samples were determined. The effects of fraction of PMMA on the properties of sintered micro-porous Ti64 alloy samples were investigated. It was shown that the fraction of PMMA could be controlled to affect the properties of the Ti alloy.展开更多
文摘The injection molding products with different volume ratios of ZrO2 ceramic powder to 316L stainless steel powder were prepared. Properties and structure of the products were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope (TEM). The results show that the compressive stress exists in the products and the bend strength reaches 300MPa. ZrO2 phase and stainless steel phase are uniform in samples. The toughness of ceramic increases with the increasing the content of stainless steel. Through TEM study of the interface, some crystalline orientation relationships are determined.
基金financially supported by the National Natural Science Foundation of China(Nos.52274359 and 52304379)Beijing Natural Science Foundation,China(No.L212021)+4 种基金China National Postdoctoral Program for Innovative Talents(No.BX20220034)China Postdoctoral Science Foundation(No.2022M720403)Fundamental Research Funds for the Central Universities,China(Nos.FRFTP-19005C1Z and 00007718)AECC University Research Cooperation Project,China(No.HFZL2021CXY021)State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14)。
文摘Interstitial oxygen(O)contamination remains a substantial challenge for metal injection molding(MIM)of titanium alloys.Herein,this critical problem is successfully addressed by regulating the thermal debinding temperature and incorporating the oxygen scavenger LaB_(6).Results indicate that the surface oxide layer(with a thickness of(13.4±0.5)nm)of Ti_(6)Al4V powder begins to dissolve into the Ti matrix within the temperature range of 663–775℃.O contamination in MIM Ti alloys can be effectively mitigated by lowering the thermal debinding temperature and adding LaB6powder.As a result of reduced dissolved O content,the slips of mixedanddislocations are effectively accelerated,leading to improved ductility.Moreover,grain refinement,along with the in situ formation of Ti B whiskers and second-phase La_(2)O_(3)particles,enhances the strength of the material.The fabricated MIM Ti6Al4V sample exhibits excellent mechanical properties,achieving an ultimate tensile strength of(967±5)MPa,a yield strength of(866±8)MPa,and an elongation of 21.4%±0.7%.These tensile properties represent some of the best results reported in the literature for MIM Ti_(6)Al4V alloys.This study offers valuable insights into the development of high-performance MIM Ti alloys and other metal materials.
文摘Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted to determine the rheological parameters and to analyze the rheological properties of the feedstocks at different milling time, powder loading and temperature. It is indicated through the results that the viscosity increases and the value of n decreases with the increase of milling time. The more the powder loading is, the higher the viscosity is. The empirical formula on the relationship between the viscosity and the powder loading is: ηr=η/ηb=A(1-Ф/Фmax)/^- m . The value m is calculated as 0.33. The flow activation energy Ea decreases with the increase of shear rate.
基金Project(2011CB606306)supported by the National Basic Research Program of ChinaProject(FRF-TP-10-003B)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274040)supported by the National Natural Science Foundation of China
文摘The evolution of stresses due to inhomogeneity in metal injection molding (MIM) parts during sintering was investigated. The sintering model of porous materials during densification process was developed based on the continuum mechanics and thermal elasto-viseoplastic constitutive law. Model parameters were identified from the dilatometer sintering experiment. The real density distribution of green body was measured by X-ray computed tomography (CT), which was regarded as the initial condition of sintering model. Numerical calculation of the above sintering model was carried out with the finite element soRware Abaqus, through the user-defined material mechanical behavior (UMAT). The calculation results showed that shrinkages of low density regions were faster than those of high density regions during sintering, which led to internal stresses. Compressive stresses existed in high density regions and tensile stresses existed in low density regions. The densification of local regions depended on not only the initial density, but also the evolution of stresses during the sintering stage.
基金Supported by the Key Program of National Natural Science Foundation of China(11432003)the Key Research Project for Henan Universities(15A430009)
文摘For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.
文摘An improved wax-based binder was developed for powder injection molding of pure titanium. A critical powder loading of 69 vol.% and a pseudo-plastic flow behavior were obtained by the feedstock based on the binder. The injection molding, debinding, and sintering process were studied. An ideal control of carbon and oxygen contents was achieved by thermal debinding in vacuum atmosphere (10^-3 Pa). The mechanical properties of as-sintered specimens were less than those of titanium made by the conventional press-sintering process. Good shape retention and ±0.04 mm dimension deviation were achieved.
基金Supported by the National Natural Science Foundation of China(10871159) the National Basic Research Program of China(2005CB321704)
文摘A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.
基金Project (No. 50675080) supported by the National Natural Science Foundation of China
文摘This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB705405)National Natural Science Foundation of China (Grant No. 50775199)Zhejiang Provincial Science and Technology Plan Program of China (Grant No. 2007C21057)
文摘Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology.
基金Supported by National Natural Science Foundation of China(Grant No.51205350)Hong Kong Scholars Program of China(Grant No.XJ2013015)Zhejiang Provincial Research Program of Public Welfare Technology Application of China(Grant No.2013C31027)
文摘The current development of precision plastic injection molding machines mainly focuses on how to save material and improve precision, but the two aims contradict each other. For a clamp unit, clamping precision improving depends on the design quality of the stationary platen. Compared with the parametric design of stationary platen, structural scheme design could obtain the optimization model with double objectives and multi-constraints. In this paper, a SE-160 precision plastic injection molding machine with 1600 kN clamping force is selected as the subject in the case study. During the motion of mold closing and opening, the stationary platen of SE-160 is subjected to a cyclic loading, which would cause the fatigue rupture of the tie bars in periodically long term operations. In order to reduce the deflection of the stationary platen, the FEA method is introduced to optimize the structure of the stationary platen. Firstly, an optimal topology model is established by variable density method. Then, structural topology optimizations of the stationary platen are done with the removable material from 50%, 60% to 70%. Secondly, the other two recommended optimization schemes are given and compared with the original structure. The result of performances comparison shows that the scheme II of the platen is the best one. By choosing the best alternative, the volume and the local maximal stress of the platen could be decreased, corresponding to cost-saving material and better mechanical properties. This paper proposes a structural optimization design scheme, which can save the material as well as improve the clamping precision of the precision plastic injection molding machine.
基金supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 108M561)
文摘Polypropylene (PP)/titanium dioxide (TiO2) nano-composites were prepared by melt compounding with a twin screw extruder. Nanoparticles were modified prior to melt mixing with maleic anhydride grafted styreneethylene-butylene-styrene (SEBS-g-MA) and silane. The composites were injection molded and mechanical tests were applied to obtain tensile strength, elastic modulus and impact strength. Antibacterial efficiency test was applied on the injection molded composite plaques by viable cell counting technique. The results showed that the composites including SEBS-g-MA and silane coated TiO2 gave better mechanical properties than the composites without SEBS-g-MA. Antibacterial efficiency of the composites varied according to the dispersion and the concentration of the particles and it was observed that composites at low content of TiO2 showed higher antibacterial property due to the better photocatalytic activity of the particles during UV exposure.
基金(Nos. 20806040,61073059 and 61034005) supported by the National Natural Science Foundation of China
文摘This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.
基金supported by the National High-Tech Research and Development Program of China(No.2006AA03Z502)
文摘High-nitrogen nickel-free stainless steels were fabricated by the metal injection molding technique using high nitrogen alloying powders and a mixture of three polymers as binders.Mixtures of metal powders and binders with various proportions were also investigated, and an optimum powder loading capacity was determined as 64vol%.Intact injection molded compacts were successfully obtained by regulating the processing parameters.The debinding process for molded compacts was optimized with a combination of thermo-gravimetric analysis and differential scanning calorimetry analysis.An optimum relative density and nitrogen content of the specimens are obtained at 1360℃,which are 97.8%and 0.79wt%,respectively.
基金supported by the National Key R&D Program of China(No.2022YFC2401903)the“Pioneer”and the“Leading Goose”R&D Program of Zhejiang Province(No.2023C01170)+1 种基金the National Natural Science Foundation of China(No.52205424)the Key Project of Science and Technology Innovation 2025 of Ningbo(No.2023Z029),China.
文摘Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites.
基金the Major Project of the Ministry of Science and Technology of Changsha,China(No.kh2003014)the Hunan Provincial Natural Science Foundation,China(Nos.2018JJ2584,2018JJ3507)+1 种基金the Beijing Municipal Science and Technology Comission,China(No.D171100002917004)the Guangxi Science and Technology Plan Project,China(No.AD16380019).
文摘This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection molding technology to considerably improve material utilization.The influence of MIM carbon impurity variation on the mechanical properties and corrosion resistance of 316L stainless steel was studied.In vitro cytotoxicity and animal transplantation tests were also carried out to evaluate the safety of MIM stents.The results showed that the performance of 316L stainless steel was very sensitive to the carbon content.Carbon fluctuations should be precisely controlled during MIM.All MIM stents were successfully implanted into the aortas of the dogs,and the MIM 316L stents had no significant cytotoxicity.The novel intravascular stent manufactured using MIM can maintain a stable form and structure with fast endothelialization of the luminal surface of the stent and ensure long-term patency in an animal model.The novel intravascular stent manufactured using MIM demonstrates favorable structural,physical,and chemical stability,as well as biocompatibility,offering promising application in clinical practice.
文摘The linear isothermo-viscoelastic constitutive equation is established according to the principle of viscoelastic mechanics. Given the boundary conditions of the temperature field, the linear thermo-viscoelastic constitutive equation is established acording to the analysis of the thermorheologically simple. The stress analysis model is constructed on the base of some reasonable hypotheses which consider the restraint conditions of mold and the characteristics of injection molding in the post-filling stage. The mathematical model is calculated by the finite difference method. The results can help to predict the warpage of plastic products.
基金supported by the National Natural Science Foundation of China(No.51073111)
文摘Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with different injection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young's modulus was observed with increasing injection speed. In order to investigate the mechanism behind this decrease, the orientation, molecular weight, molecular weight distribution, melt flow rate, crystallinity and crystal morphology of HDPE were characterized using two-dimensional wide-angle X-ray diffraction (2D-WAXD), gel permeation chromatography (GPC), capillary rheometry and differential scanning calorimetry (DSC), respectively. It is demonstrated that the orientation, molecular weight, molecular weight distribution, melt flow rate and crystallinity have no obvious change with increasing injection speed. Nevertheless, the content of extended chain crystals or large folded chain crystals was found to decrease with increasing injection speed. Therefore, it is concluded that the decrease in tensile properties is mainly contributed by the reduced content of extended chain crystals or large folded chain crystals. This study provides industry with valuable information for the application of high speed injection molding.
文摘In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds.
基金the National Natural Science Foundation of China (No. 50873060)
文摘An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample.
基金supported by the Scientific Research Project Program of Marmara University (No.FEN-C-YLP-280110-0004)Marmara University for their financial support and the provision of laboratory facilities
文摘The powder space holder (PSH) and powder injection molding (PIM) methods have an industrial competitive advantage because they are capable of the net-shape production of micro-sized porous parts. In this study, micro-porous Ti6Al4V alloy (Ti64) parts were produced by the PSH-PIM process. Ti64 alloy powder and spherical polymethylrnethacrylate (PMMA) particles were used as a space holder material. After molding, binder debinding was performed by thermal method under inert gas. Debinded samples were sintered at 1250℃ for 60min in a vacuum (10-4 Pa). Metallographic studies were conducted to determine densification and the corresponding microstructural changes. The surface of sintered samples was examined by SEM. The compressive stress and elastic modulus of the rificro-porous Ti64 samples were determined. The effects of fraction of PMMA on the properties of sintered micro-porous Ti64 alloy samples were investigated. It was shown that the fraction of PMMA could be controlled to affect the properties of the Ti alloy.